forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspeech_paraformer-large.py
60 lines (53 loc) · 2.03 KB
/
speech_paraformer-large.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
import time
import argparse
from ipex_llm.transformers.npu_model import FunAsrAutoModel as AutoModel
from transformers.utils import logging
logger = logging.get_logger(__name__)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Transcribe speech to text using `generate()` API for npu model"
)
parser.add_argument(
"--repo-id-or-model-path",
type=str,
default="iic/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch",
)
parser.add_argument('--load_in_low_bit', type=str, default="sym_int8",
help='Load in low bit to use')
parser.add_argument("--save-directory", type=str,
required=True,
help="The path of folder to save converted model, "
"If path not exists, lowbit model will be saved there. "
"Else, lowbit model will be loaded.",
)
args = parser.parse_args()
model_path = args.repo_id_or_model_path
model = AutoModel(
model=model_path,
attn_implementation="eager",
load_in_low_bit=args.load_in_low_bit,
low_cpu_mem_usage=True,
optimize_model=True,
save_directory=args.save_directory
)
res = model.generate(input=f"{model.model_path}/example/asr_example.wav",
batch_size_s=300,
hotword='魔搭')
print(res)