-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathastrotime.go
executable file
·405 lines (336 loc) · 12.1 KB
/
astrotime.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
// NAA - NOAA's Astronomical Algorithms
package astrotime
// (JavaScript web page
// http://www.srrb.noaa.gov/highlights/sunrise/sunrise.html by
// Chris Cornwall, Aaron Horiuchi and Chris Lehman)
// Ported to C++ by Pete Gray ([email protected]), July 2006
// Released as Open Source and can be used in any way, as long as the
// above description remains in place.
import (
"math"
"time"
)
// Conversions
const (
RadToDeg = 180 / math.Pi
DegToRad = math.Pi / 180
RadToGrad = 200 / math.Pi
GradToDeg = math.Pi / 200
)
// More time constants
const (
OneDay = time.Hour * 24
)
// CalcJD converts a time.Time object to a julian date
func CalcJD(t time.Time) float64 {
y, m, d, hh, mm, ss, ms := t.Year(), int(t.Month()), t.Day(), t.Hour(), t.Minute(), t.Second(), t.Nanosecond()/1e6
// Calc integer part (days)
jday := (1461*(y+4800+(m-14)/12))/4 + (367*(m-2-12*((m-14)/12)))/12 - (3*((y+4900+(m-14)/12)/100))/4 + d - 32075
// Calc floating point part (fraction of a day)
jdatetime := float64(jday) + (float64(hh)-12.0)/24.0 + (float64(mm) / 1440.0) + (float64(ss) / 86400.0) + (float64(ms) / 86400000.0)
// Adjust to UT
_, zoneOffset := t.Zone()
return jdatetime + float64(zoneOffset)/86400
}
// Name: calcTimeJulianCent
// Type: Function
// Purpose: convert Julian Day to centuries since J2000.0.
// Arguments:
// jd : the Julian Day to convert
// Return value:
// the T value corresponding to the Julian Day
func calcTimeJulianCent(t float64) float64 {
return (t - 2451545.0) / 36525.0
}
// Name: calcJDFromJulianCent
// Type: Function
// Purpose: convert centuries since J2000.0 to Julian Day.
// Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// the Julian Day corresponding to the t value
func calcJDFromJulianCent(t float64) float64 {
return t*36525.0 + 2451545.0
}
// Name: calGeomMeanLongSun
// Type: Function
// Purpose: calculate the Geometric Mean Longitude of the Sun
// Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// the Geometric Mean Longitude of the Sun in degrees
func calcGeomMeanLongSun(t float64) float64 {
L0 := 280.46646 + t*(36000.76983+0.0003032*t)
for L0 > 360.0 {
L0 -= 360.0
}
for L0 < 0.0 {
L0 += 360.0
}
return L0
}
// Name: calcMeanObliquityOfEcliptic
// Type: Function
// Purpose: calculate the mean obliquity of the ecliptic
// Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// mean obliquity in degrees
func calcMeanObliquityOfEcliptic(t float64) float64 {
seconds := 21.448 - t*(46.8150+t*(0.00059-t*(0.001813)))
return 23.0 + (26.0+(seconds/60.0))/60.0
}
// Name: calcObliquityCorrection
// Type: Function
// Purpose: calculate the corrected obliquity of the ecliptic
// Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// corrected obliquity in degrees
func calcObliquityCorrection(t float64) float64 {
e0 := calcMeanObliquityOfEcliptic(t)
omega := 125.04 - 1934.136*t
return e0 + 0.00256*math.Cos(omega*DegToRad)
}
// Name: calcEccentricityEarthOrbit
// Type: Function
// Purpose: calculate the eccentricity of earth's orbit
// Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// the unitless eccentricity
func calcEccentricityEarthOrbit(t float64) float64 {
return 0.016708634 - t*(0.000042037+0.0000001267*t)
}
// Name: calGeomAnomalySun
// Type: Function
// Purpose: calculate the Geometric Mean Anomaly of the Sun
// Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// the Geometric Mean Anomaly of the Sun in degrees
func calcGeomMeanAnomalySun(t float64) float64 {
return 357.52911 + t*(35999.05029-0.0001537*t)
}
// Name: calcEquationOfTime
// Type: Function
// Purpose: calculate the difference between true solar time and mean
// solar time
//Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// equation of time in minutes of time
func calcEquationOfTime(t float64) float64 {
epsilon := calcObliquityCorrection(t)
l0 := calcGeomMeanLongSun(t)
e := calcEccentricityEarthOrbit(t)
m := calcGeomMeanAnomalySun(t)
y := math.Tan(DegToRad * epsilon / 2.0)
y *= y
sin2l0 := math.Sin(2.0 * DegToRad * l0)
sinm := math.Sin(DegToRad * m)
cos2l0 := math.Cos(2.0 * DegToRad * l0)
sin4l0 := math.Sin(4.0 * DegToRad * l0)
sin2m := math.Sin(2.0 * DegToRad * m)
Etime := y*sin2l0 - 2.0*e*sinm + 4.0*e*y*sinm*cos2l0 - 0.5*y*y*sin4l0 - 1.25*e*e*sin2m
return RadToDeg * Etime * 4.0
}
// Name: calcSunEqOfCenter
// Type: Function
// Purpose: calculate the equation of center for the sun
// Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// in degrees
func calcSunEqOfCenter(t float64) float64 {
m := calcGeomMeanAnomalySun(t)
mrad := DegToRad * m
sinm := math.Sin(mrad)
sin2m := math.Sin(mrad + mrad)
sin3m := math.Sin(mrad + mrad + mrad)
return sinm*(1.914602-t*(0.004817+0.000014*t)) + sin2m*(0.019993-0.000101*t) + sin3m*0.000289
}
// Name: calcSunTrueLong
// Type: Function
// Purpose: calculate the true longitude of the sun
// Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// sun's true longitude in degrees
func calcSunTrueLong(t float64) float64 {
l0 := calcGeomMeanLongSun(t)
c := calcSunEqOfCenter(t)
return l0 + c
}
// Name: calcSunApparentLong
// Type: Function
// Purpose: calculate the apparent longitude of the sun
// Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// sun's apparent longitude in degrees
func calcSunApparentLong(t float64) float64 {
o := calcSunTrueLong(t)
omega := 125.04 - 1934.136*t
return o - 0.00569 - 0.00478*math.Sin(DegToRad*omega)
}
// Name: calcSunDeclination
// Type: Function
// Purpose: calculate the declination of the sun
// Arguments:
// t : number of Julian centuries since J2000.0
// Return value:
// sun's declination in degrees
func calcSunDeclination(t float64) float64 {
e := calcObliquityCorrection(t)
lambda := calcSunApparentLong(t)
sint := math.Sin(DegToRad*e) * math.Sin(DegToRad*lambda)
return RadToDeg * math.Asin(sint)
}
// Name: calcHourAngleSunrise
// Type: Function
// Purpose: calculate the hour angle of the sun at sunrise for the
// latitude
//Arguments:
// lat : latitude of observer in degrees
// solarDec : declination angle of sun in degrees
//Return value:
// hour angle of sunrise in radians
func calcHourAngleSunrise(lat float64, solarDec float64) float64 {
latRad := DegToRad * lat
sdRad := DegToRad * solarDec
return (math.Acos(math.Cos(DegToRad*90.833)/(math.Cos(latRad)*math.Cos(sdRad)) - math.Tan(latRad)*math.Tan(sdRad)))
}
// Name: calcSolNoonUTC
// Type: Function
// Purpose: calculate the Universal Coordinated Time (UTC) of solar
// noon for the given day at the given location on earth
// Arguments:
// t : number of Julian centuries since J2000.0
// longitude : longitude of observer in degrees
// Return value:
// time in minutes from zero Z
func calcSolNoonUTC(t float64, longitude float64) float64 {
// First pass uses approximate solar noon to calculate eqtime
tnoon := calcTimeJulianCent(calcJDFromJulianCent(t) + longitude/360.0)
eqTime := calcEquationOfTime(tnoon)
solNoonUTC := 720 + (longitude * 4) - eqTime
newt := calcTimeJulianCent(calcJDFromJulianCent(t) - 0.5 + solNoonUTC/1440.0)
eqTime = calcEquationOfTime(newt)
return 720 + (longitude * 4) - eqTime
}
// Name: calcSunriseUTC
// Type: Function
// Purpose: calculate the Universal Coordinated Time (UTC) of sunrise
// for the given day at the given location on earth
// Arguments:
// JD : julian day
// latitude : latitude of observer in degrees
// longitude : longitude of observer in degrees
// Return value:
// time in minutes from zero Z
// Calculate the UTC sunrise for the given day at the given location
func calcSunriseUTC(jd float64, latitude float64, longitude float64) float64 {
t := calcTimeJulianCent(jd)
// *** Find the time of solar noon at the location, and use
// that declination. This is better than start of the
// Julian day
noonmin := calcSolNoonUTC(t, longitude)
tnoon := calcTimeJulianCent(jd + noonmin/1440.0)
// *** First pass to approximate sunrise (using solar noon)
eqTime := calcEquationOfTime(tnoon)
solarDec := calcSunDeclination(tnoon)
hourAngle := calcHourAngleSunrise(latitude, solarDec)
delta := longitude - RadToDeg*hourAngle
timeDiff := 4 * delta
timeUTC := 720 + timeDiff - eqTime
// *** Second pass includes fractional jday in gamma calc
newt := calcTimeJulianCent(calcJDFromJulianCent(t) + timeUTC/1440.0)
eqTime = calcEquationOfTime(newt)
solarDec = calcSunDeclination(newt)
hourAngle = calcHourAngleSunrise(latitude, solarDec)
delta = longitude - RadToDeg*hourAngle
timeDiff = 4 * delta
timeUTC = 720 + timeDiff - eqTime
return timeUTC
}
// CalcSunrise calculates the sunrise, in local time, on the day t at the
// location specified in longitude and latitude.
func CalcSunrise(t time.Time, latitude float64, longitude float64) time.Time {
jd := CalcJD(t)
sunriseUTC := time.Duration(math.Floor(calcSunriseUTC(jd, latitude, longitude)*60) * 1e9)
loc, _ := time.LoadLocation("UTC")
return time.Date(t.Year(), t.Month(), t.Day(), 0, 0, 0, 0, loc).Add(sunriseUTC).In(t.Location())
}
// Name: calcHourAngleSunset
// Type: Function
// Purpose: calculate the hour angle of the sun at sunset for the
// latitude
// Arguments:
// lat : latitude of observer in degrees
// solarDec : declination angle of sun in degrees
// Return value:
// hour angle of sunset in radians
func calcHourAngleSunset(lat float64, solarDec float64) float64 {
latRad := DegToRad * lat
sdRad := DegToRad * solarDec
HA := (math.Acos(math.Cos(DegToRad*90.833)/(math.Cos(latRad)*math.Cos(sdRad)) - math.Tan(latRad)*math.Tan(sdRad)))
return -HA // in radians
}
// Name: calcSunsetUTC
// Type: Function
// Purpose: calculate the Universal Coordinated Time (UTC) of sunset
// for the given day at the given location on earth
//Arguments:
// JD : julian day
// latitude : latitude of observer in degrees
// longitude : longitude of observer in degrees
// Return value:
// time in minutes from zero Z
func calcSunsetUTC(jd float64, latitude float64, longitude float64) float64 {
t := calcTimeJulianCent(jd)
// *** Find the time of solar noon at the location, and use
// that declination. This is better than start of the
// Julian day
noonmin := calcSolNoonUTC(t, longitude)
tnoon := calcTimeJulianCent(jd + noonmin/1440.0)
// First calculates sunrise and approx length of day
eqTime := calcEquationOfTime(tnoon)
solarDec := calcSunDeclination(tnoon)
hourAngle := calcHourAngleSunset(latitude, solarDec)
delta := longitude - RadToDeg*hourAngle
timeDiff := 4 * delta
timeUTC := 720 + timeDiff - eqTime
// first pass used to include fractional day in gamma calc
newt := calcTimeJulianCent(calcJDFromJulianCent(t) + timeUTC/1440.0)
eqTime = calcEquationOfTime(newt)
solarDec = calcSunDeclination(newt)
hourAngle = calcHourAngleSunset(latitude, solarDec)
delta = longitude - RadToDeg*hourAngle
timeDiff = 4 * delta
return 720 + timeDiff - eqTime
}
// CalcSunset calculates the sunset, in local time, on the day t at the
// location specified in longitude and latitude.
func CalcSunset(t time.Time, latitude float64, longitude float64) time.Time {
jd := CalcJD(t)
sunsetUTC := time.Duration(math.Floor(calcSunsetUTC(jd, latitude, longitude)*60) * 1e9)
loc, _ := time.LoadLocation("UTC")
return time.Date(t.Year(), t.Month(), t.Day(), 0, 0, 0, 0, loc).Add(sunsetUTC).In(t.Location())
}
// NextSunrise returns date/time of the next sunrise after tAfter
func NextSunrise(tAfter time.Time, latitude float64, longitude float64) (tSunrise time.Time) {
tSunrise = CalcSunrise(tAfter, latitude, longitude)
if tAfter.After(tSunrise) {
tSunrise = CalcSunrise(tAfter.Add(OneDay), latitude, longitude)
}
return
}
// NextSunset returns date/time of the next sunset after tAfter
func NextSunset(tAfter time.Time, latitude float64, longitude float64) (tSunset time.Time) {
tSunset = CalcSunset(tAfter, latitude, longitude)
if tAfter.After(tSunset) {
tSunset = CalcSunset(tAfter.Add(OneDay), latitude, longitude)
}
return
}