-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_test_perplexity.py
100 lines (77 loc) · 3.14 KB
/
evaluate_test_perplexity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import math
import argparse
from utils import batchify, get_batch, repackage_hidden
import torch
import torch.nn as nn
from dictionary_corpus import Dictionary, Corpus, tokenize
parser = argparse.ArgumentParser(description='Evaluate perplexity of the dataset, ignoring the <unk> words')
parser.add_argument('--data', type=str, default='./data/penn',
help='location of the data corpus')
parser.add_argument('--test', type=str, default=None,
help='Indicate your test file if different from data/test.txt')
parser.add_argument('--checkpoint', type=str, default='model.pt',
help='path to save the final model')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--bptt', type=int, default=35,
help='sequence length')
args = parser.parse_args()
def evaluate(data_source):
model.eval()
total_loss = 0
total_len = 0
ntokens = len(dictionary)
hidden = model.init_hidden(eval_batch_size)
unk_idx = dictionary.word2idx["<unk>"]
if args.cuda:
out_type = torch.cuda.LongTensor()
else:
out_type = torch.LongTensor()
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i, args.bptt)
output, hidden = model(data, hidden)
output_flat = output.view(-1, ntokens)
subset = targets != unk_idx
targets = targets[subset]
output_flat = output_flat[torch.arange(0, output_flat.size(0), out=out_type)[subset]]
total_len += targets.size(0)
total_loss += targets.size(0) * nn.CrossEntropyLoss()(output_flat, targets).item()
hidden = repackage_hidden(hidden)
return total_loss / total_len
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
eval_batch_size = 32
if args.test:
dictionary = Dictionary(args.data)
test = tokenize(dictionary, args.test)
print("Size, OOV", test.size(0), sum(test == dictionary.word2idx["<unk>"]))
test_data = batchify(test, eval_batch_size, args.cuda)
ntokens = len(dictionary)
else:
corpus = Corpus(args.data)
print("Size, OOV", corpus.test.size(0), sum(corpus.test == corpus.dictionary.word2idx["<unk>"]))
test_data = batchify(corpus.test, eval_batch_size, args.cuda)
dictionary = corpus.dictionary
# Load the best saved model.
with open(args.checkpoint, 'rb') as f:
print("Loading the model")
if args.cuda:
model = torch.load(f)
else:
# to convert model trained on cuda to cpu model
model = torch.load(f, map_location=lambda storage, loc: storage)
print("Evaluation on non-unk tokens")
# Run on test data.
test_loss = evaluate(test_data)
print('=' * 89)
print('Test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)))
print('=' * 89)