Skip to content

cosdt/pytorch-integration-tests

Repository files navigation

PyTorch Out-of-tree Accelerator TestInfra

Welcome to the pytorch-integration-tests repository! This repository is designed to facilitate the integration testing of different accelerators with PyTorch. Our primary focus is to ensure seamless integration and compatibility across various devices by running comprehensive GitHub workflows.

Accelerator Integration Test Results

Click here to view the torchbenchmark report
npu
alexnet
Background_Matting
basic_gnn_edgecnn
basic_gnn_gcn
basic_gnn_gin
basic_gnn_sage
BERT_pytorch
cm3leon_generate
dcgan
demucs
densenet121
detectron2_fasterrcnn_r_101_c4
detectron2_fasterrcnn_r_101_dc5
detectron2_fasterrcnn_r_101_fpn
detectron2_fasterrcnn_r_50_c4
detectron2_fasterrcnn_r_50_dc5
detectron2_fasterrcnn_r_50_fpn
detectron2_fcos_r_50_fpn
detectron2_maskrcnn
detectron2_maskrcnn_r_101_c4
detectron2_maskrcnn_r_101_fpn
detectron2_maskrcnn_r_50_c4
detectron2_maskrcnn_r_50_fpn
dlrm
doctr_det_predictor
doctr_reco_predictor
drq
fastNLP_Bert
functorch_dp_cifar10
functorch_maml_omniglot
hf_Albert
hf_Bart
hf_Bert
hf_Bert_large
hf_BigBird
hf_clip
hf_distil_whisper
hf_DistilBert
hf_GPT2
hf_GPT2_large
hf_Longformer
hf_Reformer
hf_Roberta_base
hf_T5
hf_T5_base
hf_T5_generate
hf_T5_large
hf_Whisper
LearningToPaint
lennard_jones
llama
llama_v2_7b_16h
llava
maml
maml_omniglot
microbench_unbacked_tolist_sum
mnasnet1_0
mobilenet_v2
mobilenet_v2_quantized_qat
mobilenet_v3_large
moco
moondream
nanogpt
nvidia_deeprecommender
opacus_cifar10
phlippe_densenet
phlippe_resnet
pyhpc_equation_of_state
pyhpc_isoneutral_mixing
pyhpc_turbulent_kinetic_energy
pytorch_CycleGAN_and_pix2pix
pytorch_stargan
pytorch_unet
resnet152
resnet18
resnet50
resnet50_quantized_qat
resnext50_32x4d
sam
sam_fast
shufflenet_v2_x1_0
simple_gpt
simple_gpt_tp_manual
soft_actor_critic
speech_transformer
squeezenet1_1
stable_diffusion_text_encoder
stable_diffusion_unet
Super_SloMo
tacotron2
timm_efficientdet
timm_efficientnet
timm_nfnet
timm_regnet
timm_resnest
timm_vision_transformer
timm_vision_transformer_large
timm_vovnet
torch_multimodal_clip
tts_angular
vgg16
vision_maskrcnn
yolov3

Overview

This repository contains workflows and scripts that automate the testing process for integrating different hardware devices with PyTorch. The tests aim to validate that PyTorch's device-specific functionalities are working correctly and efficiently across different platforms.

Key Features

  • Automated Integration Tests: Run tests automatically for different devices using GitHub Actions.
  • Cross-Device Compatibility: Ensure that PyTorch functions correctly on NPUs, GPUs, and other devices.
  • Reusable Workflows: Leverage modular and reusable workflows to streamline the testing process.

Usage

Running Tests

To run the integration tests, the repository leverages GitHub Actions. You can trigger the tests by pushing code to the repository or by manually triggering the workflows.

Customizing Workflows

The workflows are designed to be flexible. You can customize the parameters such as the target branch, runner, and loop time by modifying the inputs in the workflow files.

Roadmap

See our roadmap project for more details.

Contributing

We welcome contributions to enhance the integration testing process. Feel free to submit issues, pull requests, or suggestions to help us improve the compatibility and performance of PyTorch on various devices.

Reporting Issues

If you encounter any issues while using the workflows or integrating a device, please report them via the Issues tab.

License

This project is licensed under BSD-3-Clause license. See the LICENSE file for more details.

About

Integration testing of different accelerators with PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages