-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
89 lines (70 loc) · 3.08 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from datetime import datetime
import wandb
import os
import torch
import numpy as np
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger, WandbLogger
from utils.configurazioni import parse_arguments
from utils.callbacks_utils import get_callbacks #get_LR_scheduler
from utils.train_utils import retrieve_folders_list, Kfold_split, print_results
from model import LightningModel
from dataset_lib import MRIDataModule
if __name__ =="__main__":
args = parse_arguments()
print(args.dropout)
print(args.slices)
print(args.fc)
#SEED
os.environ['PYTHONHASHSEED'] = str(args.seed)
torch.manual_seed(args.seed)
np.random.seed(args.seed)
#dataset_relative_path = args.input_path
#current_dir = os.path.dirname(os.path.abspath(__file__))
#dataset_folder = os.path.join(current_dir, dataset_relative_path )
#print(dataset_folder)
folders_list = retrieve_folders_list(args.input_path)
folder_time = args.exp_name + datetime.now().strftime('%Y-%m-%d_%H-%M-%S-%f')[:-3]
roc_slice = []
roc_patient = []
datasets_list = Kfold_split(folders_list, args.folds)
print(f"La lista dei dataset ha {len(datasets_list)} elementi")
print(f"Le folds selezionate sono {args.folds}")
for i, fold in enumerate(datasets_list):
print(f"\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nESECUZIONE fold # {i+1} \n")
fold_start = datetime.now()
#logger = TensorBoardLogger(f"tb_logs_{i}", name="mri_model_v0")
logger_wandb = WandbLogger(save_dir= f"wandb_logs_{i}" , name=f"mri_model_MINI_fold_{i+1}", project="NACtry")
dm = MRIDataModule(fold[0], fold[1], slices=args.slices, batch_size=args.batch)
print(f"CLASS WEIGHTS: {dm.class_weights}")
model = LightningModel(args.slices, args.fc, args.dropout, args.exp_name, args.optim, args.learning_rate, args.l2_reg, args.secondary_weight, dm.class_weights, folder_time, i)
cb_list = get_callbacks()
#Istantiate a trainer
trainer = pl.Trainer(
logger = logger_wandb, #[logger, logger_wandb]
accelerator = 'auto',
default_root_dir='./LOGS',
num_sanity_val_steps=0,
precision='bf16',
min_epochs=1,
max_epochs=args.epochs,
check_val_every_n_epoch=1,
callbacks=None, #[cb_list], c'è problema con i callbacks e sembra che sia collegato alla libreria
reload_dataloaders_every_n_epochs=1
)
print(f"LR: {args.learning_rate}, WD: {args.l2_reg}")
trainer.fit(model=model, datamodule=dm)
trainer.validate(model=model, datamodule=dm)
trainer.test(model=model, datamodule=dm)
wandb.finish()
print(f"Linea 66")
roc_patient.append(model.patient_dict_test)
roc_slice.append(model.slice_dict_test)
print("Linea 69")
print(f"\n\nFOLD {i+1} TIME: {datetime.now()-fold_start}")
#End of the Kfold
print("Linea 72")
print(f"ROC SLICE:\n{roc_slice}")
print_results(roc_slice, roc_patient)
print("Linea 74")
print()