-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathocr_yolov4.py
85 lines (69 loc) · 3.25 KB
/
ocr_yolov4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import sys, os
sys.path.append('yolov3_detector')
from yolov3_custom_helper import yolo_detector
from darknet import Darknet
sys.path.append('pytorch-YOLOv4')
from tool.darknet2pytorch import Darknet as DarknetYolov4
import argparse
import cv2,time
import numpy as np
from tool.plateprocessing import find_coordinates, plate_to_string, padder, get_color
from tool.utils import alphanumeric_segemntor,plot_boxes_cv2
from tool.torch_utils import *
import time
from utility_codes.tsv_converter import ConverterTSV
use_cuda = True
########## Initialize OCR tsv writer ##########
ocr_save_filename = 'tsv_files/IvLabs_OCR_Day3.tsv'
ocr_writer = ConverterTSV(ocr_save_filename,file_type='ocr')
#################### IMPORTING MODEL FOR DIGIT RECOGNITION ####################
cfg_v4_alpha = 'pytorch-YOLOv4/cfg/digit.cfg'
weight_v4_alpha = 'weights/ocr.weights'
m_alpha = DarknetYolov4(cfg_v4_alpha)
m_alpha.load_weights(weight_v4_alpha)
num_classes_alpha = m_alpha.num_classes
class_names_alpha = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','0','1','2','3','4','5','6','7','8','9']
print('Loading weights from %s... Done!' % (weight_v4_alpha))
if use_cuda:
# m.cuda()
m_alpha.cuda()
# yolo_vehicle.cuda()
######### MAKE SURE IMAGES ARE IN `test_images` directory inside the current directory ##########
img_dir = 'SIH_hackathon/OCR_day3/Day3'
img_list = os.listdir(img_dir)
img_list.sort()
cv2.namedWindow('digit_on_plate', cv2.WINDOW_NORMAL)
for img_loc in img_list:
if ('.jpg' in img_loc) or ('.png' in img_loc) or ('.jpeg' in img_loc):
arranged_plate_temp = ''
img = cv2.imread(os.path.join(img_dir,img_loc))
cv2.imshow('Image', img)
confidence = 0.5
sized = cv2.resize(img, (m_alpha.width, m_alpha.height))
sized = cv2.cvtColor(sized, cv2.COLOR_BGR2RGB)
boxes = do_detect(m_alpha, sized, confidence , 0.4, use_cuda)
if len(boxes[0])>0:
digit_on_plate, cls_conf_plate, coordinates_all, labels= plot_boxes_cv2(img, boxes[0],classes_to_detect=class_names_alpha,fontScale=0.4,thick=1, savename=False, class_names=class_names_alpha, color=(0,0,0))
# print(digit_on_plate.shape)
# digit_on_plate = padder(size_digit[0], size_digit[1], digit_on_plate)
alphanumerics,x_c_list,y_c_list = alphanumeric_segemntor(img, boxes[0],class_names=class_names_alpha)
## Sort plate on basis of x axis
x_c_sort_idx = np.sort(np.argsort(x_c_list))
# arranged_plate = ''
char_list = []
for count, idx in enumerate(x_c_sort_idx):
detected_letter, digit_img = alphanumerics[idx][0], alphanumerics[idx][1]
# cv2.imshow(f'{count}. It seems like {detected_letter}',digit_img) #SHOW INDIVIDUAL
char_list = char_list + [detected_letter]
#arranged_plate = arranged_plate+detected_letter
arranged_plate_temp = plate_to_string(x_c_list, y_c_list, char_list, line_thresh = 10)
# print(arranged_plate_temp)
if arranged_plate_temp[0] in ['0','1','2','3','4','5','6','7','8','9']:
arranged_plate_temp = arranged_plate_temp[1:]
cv2.imshow('digit_on_plate', digit_on_plate)
print('The number Plate is: ', arranged_plate_temp, '\n')
ocr_writer.put_ocr(img_loc, arranged_plate_temp)
""" Add .tsv storing process here """
if cv2.waitKey(1) & 0xff == ord('q'):
break
cv2.destroyAllWindows()