1+ @article {ferte2025 ,
2+ bibtex_show = { true} ,
3+ author = { Ferté, Thomas and Ba, Kalidou and Dutartre, Dan and Legrand,
4+ Pierrick and Jouhet, Vianney and Thiébaut, Rodolphe and Hinaut,
5+ Xavier and P Hejblum, Boris} ,
6+ publisher = { French Statistical Society} ,
7+ title = { Reservoir {Computing} in {R:} A {Tutorial} for {Using}
8+ Reservoirnet to {Predict} {Complex} {Time-Series}} ,
9+ journal = { Computo} ,
10+ date = { 2025-06-27} ,
11+ doi = { 10.57750/arxn-6z34} ,
12+ issn = { 2824-7795} ,
13+ langid = { en} ,
14+ abstract = { Reservoir Computing (RC) is a machine learning method
15+ based on neural networks that efficiently process information
16+ generated by dynamical systems. It has been successful in solving
17+ various tasks including time series forecasting, language processing
18+ or voice processing. RC is implemented in `Python` and `Julia` but
19+ not in `R`. This article introduces `reservoirnet`, an `R` package
20+ providing access to the `Python` API `ReservoirPy`, allowing `R`
21+ users to harness the power of reservoir computing. This article
22+ provides an introduction to the fundamentals of RC and showcases its
23+ real-world applicability through three distinct sections. First, we
24+ cover the foundational concepts of RC, setting the stage for
25+ understanding its capabilities. Next, we delve into the practical
26+ usage of `reservoirnet` through two illustrative examples. These
27+ examples demonstrate how it can be applied to real-world problems,
28+ specifically, regression of COVID-19 hospitalizations and
29+ classification of Japanese vowels. Finally, we present a
30+ comprehensive analysis of a real-world application of
31+ `reservoirnet`, where it was used to forecast COVID-19
32+ hospitalizations at Bordeaux University Hospital using public data
33+ and electronic health records.}
34+ year = 2025 ,
35+ type = { {Research article}} ,
36+ domain = { Machine Learning} ,
37+ language = { R, Python} ,
38+ repository = { published-202505-ferte-reservoirnet} ,
39+ }
40+
141@article {giorgi2024 ,
242 bibtex_show = { true} ,
343 author = { Giorgi, Daphn\'e and Kaakai, Sarah and Lemaire, Vincent} ,
444 publisher = { French Statistical Society} ,
545 title = { Efficient simulation of individual-based population models} ,
646 journal = { Computo} ,
747 year = 2025 ,
8- url = { https://computo.sfds.asso.fr/published-202412-giorgi-efficient/} ,
948 doi = { 10.57750/sfxn-1t05} ,
1049 issn = { 2824-7795} ,
1150 type = { {Research article}} ,
@@ -25,7 +64,6 @@ @article{ambroise2024
2564 title = { Spectral Bridges: Scalable Spectral Clustering Based on Vector Quantization} ,
2665 journal = { Computo} ,
2766 year = 2025 ,
28- url = { https://computo.sfds.asso.fr/published-202412-ambroise-spectral/} ,
2967 doi = { 10.57750/1gr8-bk61} ,
3068 issn = { 2824-7795} ,
3169 type = { {Research article}} ,
@@ -46,7 +84,6 @@ @article{legrand2024
4684 Sizes for Projections Under Climate Change} ,
4785 journal = { Computo} ,
4886 year = 2024 ,
49- url = { https://computo.sfds.asso.fr/published-202407-legrand-wildfires/} ,
5087 doi = { 10.57750/4y84-4t68} ,
5188 issn = { 2824-7795} ,
5289 type = { {Research article}} ,
@@ -94,7 +131,6 @@ @article{pishchagina2024
94131 {Detection} in {Multiple} {Independent} {Time} {Series}} ,
95132 journal = { Computo} ,
96133 year = 2024 ,
97- url = { https://computo.sfds.asso.fr/published-202406-pishchagina-change-point/} ,
98134 doi = { 10.57750/9vvx-eq57} ,
99135 issn = { 2824-7795} ,
100136 type = { {Research article}} ,
@@ -131,7 +167,6 @@ @article{susmann_adaptive
131167 title = { {AdaptiveConformal: An R Package for Adaptive Conformal Inference}} ,
132168 journal = { Computo} ,
133169 year = 2024 ,
134- url = { https://computo.sfds.asso.fr/published-202407-susmann-adaptive-conformal} ,
135170 doi = { 10.57750/edan-5f53} ,
136171 type = { {Research article}} ,
137172 domain = { Statistics} ,
0 commit comments