-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlr-gd.py
95 lines (81 loc) · 2.86 KB
/
lr-gd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from math import exp
# the logistic function
def logistic_func(theta, x):
t = x.dot(theta)
g = np.zeros(t.shape)
# split into positive and negative to improve stability
g[t>=0.0] = 1.0 / (1.0 + np.exp(-t[t>=0.0]))
g[t<0.0] = np.exp(t[t<0.0]) / (np.exp(t[t<0.0])+1.0)
return g
# function to compute log-likelihood
def neg_log_like(theta, x, y):
g = logistic_func(theta,x)
return -sum(np.log(g[y>0.5])) - sum(np.log(1-g[y<0.5]))
# function to compute the gradient of the negative log-likelihood
def log_grad(theta, x, y):
g = logistic_func(theta,x)
return -x.T.dot(y-g)
# implementation of gradient descent for logistic regression
def grad_desc(theta, x, y, alpha, tol, maxiter):
nll_vec = []
nll_vec.append(neg_log_like(theta, x, y))
nll_delta = 2.0*tol
iter = 0
while (nll_delta > tol) and (iter < maxiter):
theta = theta - (alpha * log_grad(theta, x, y))
nll_vec.append(neg_log_like(theta, x, y))
nll_delta = nll_vec[-2]-nll_vec[-1]
iter += 1
return theta, np.array(nll_vec)
# function to compute output of LR classifier
def lr_predict(theta,x):
# form Xtilde for prediction
shape = x.shape
Xtilde = np.zeros((shape[0],shape[1]+1))
Xtilde[:,0] = np.ones(shape[0])
Xtilde[:,1:] = x
return logistic_func(theta,Xtilde)
## Generate dataset
np.random.seed(2017) # Set random seed so results are repeatable
x,y = datasets.make_blobs(n_samples=100,n_features=2,centers=2,cluster_std=6.0)
## build classifier
# form Xtilde
shape = x.shape
xtilde = np.zeros((shape[0],shape[1]+1))
xtilde[:,0] = np.ones(shape[0])
xtilde[:,1:] = x
# Initialize theta to zero
theta = np.zeros(shape[1]+1)
# Run gradient descent
#TODO
alpha = ????
tol = 1e-3
maxiter = 10000
theta,cost = grad_desc(theta,xtilde,y,alpha,tol,maxiter)
## Plot the decision boundary.
# Begin by creating the mesh [x_min, x_max]x[y_min, y_max].
h = .02 # step size in the mesh
x_delta = (x[:, 0].max() - x[:, 0].min())*0.05 # add 5% white space to border
y_delta = (x[:, 1].max() - x[:, 1].min())*0.05
x_min, x_max = x[:, 0].min() - x_delta, x[:, 0].max() + x_delta
y_min, y_max = x[:, 1].min() - y_delta, x[:, 1].max() + y_delta
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = lr_predict(theta,np.c_[xx.ravel(), yy.ravel()])
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00'])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
## Plot the training points
plt.scatter(x[:, 0], x[:, 1], c=y, cmap=cmap_bold)
## Show the plot
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("Logistic regression classifier")
plt.show()