-
Notifications
You must be signed in to change notification settings - Fork 109
/
llm_service.py
349 lines (304 loc) · 13.2 KB
/
llm_service.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import time
import json
from pathlib import Path
from typing import Optional
import logging
logging.basicConfig(level = logging.INFO)
import numpy as np
import torch
from transformers import AutoTokenizer
import re
import tensorrt_llm
from tensorrt_llm.logger import logger
from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelRunner
from tensorrt_llm.builder import get_engine_version
if PYTHON_BINDINGS:
from tensorrt_llm.runtime import ModelRunnerCpp
def read_model_name(engine_dir: str):
engine_version = get_engine_version(engine_dir)
with open(Path(engine_dir) / "config.json", 'r') as f:
config = json.load(f)
if engine_version is None:
return config['builder_config']['name'], None
model_arch = config['pretrained_config']['architecture']
model_version = None
if model_arch == 'ChatGLMForCausalLM':
model_version = config['pretrained_config']['chatglm_version']
return model_arch, model_version
def throttle_generator(generator, stream_interval):
for i, out in enumerate(generator):
if not i % stream_interval:
yield out
if i % stream_interval:
yield out
def load_tokenizer(tokenizer_dir: Optional[str] = None,
vocab_file: Optional[str] = None,
model_name: str = 'GPTForCausalLM',
model_version: Optional[str] = None,
tokenizer_type: Optional[str] = None):
if vocab_file is None:
use_fast = True
if tokenizer_type is not None and tokenizer_type == "llama":
use_fast = False
# Should set both padding_side and truncation_side to be 'left'
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir,
legacy=False,
padding_side='left',
truncation_side='left',
trust_remote_code=True,
tokenizer_type=tokenizer_type,
use_fast=use_fast)
elif model_name == 'GemmaForCausalLM':
from transformers import GemmaTokenizer
# Initialize tokenizer from vocab file.
tokenizer = GemmaTokenizer(vocab_file=vocab_file,
padding_side='left',
truncation_side='left',
legacy=False)
else:
# For gpt-next, directly load from tokenizer.model
tokenizer = T5Tokenizer(vocab_file=vocab_file,
padding_side='left',
truncation_side='left',
legacy=False)
if model_name == 'QWenForCausalLM':
with open(Path(tokenizer_dir) / "generation_config.json") as f:
gen_config = json.load(f)
chat_format = gen_config['chat_format']
if chat_format == 'raw' or chat_format == 'chatml':
pad_id = gen_config['pad_token_id']
end_id = gen_config['eos_token_id']
else:
raise Exception(f"unknown chat format: {chat_format}")
elif model_name == 'ChatGLMForCausalLM' and model_version == 'glm':
pad_id = tokenizer.pad_token_id
end_id = tokenizer.eop_token_id
else:
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
pad_id = tokenizer.pad_token_id
end_id = tokenizer.eos_token_id
return tokenizer, pad_id, end_id
class TensorRTLLMEngine:
def __init__(self):
pass
def initialize_model(self, engine_dir, tokenizer_dir):
self.log_level = 'error'
self.runtime_rank = tensorrt_llm.mpi_rank()
logger.set_level(self.log_level)
model_name, model_version = read_model_name(engine_dir)
self.tokenizer, self.pad_id, self.end_id = load_tokenizer(
tokenizer_dir=tokenizer_dir,
vocab_file=None,
model_name=model_name,
model_version=model_version,
tokenizer_type=None,
)
self.prompt_template = None
self.runner_cls = ModelRunner
self.runner_kwargs = dict(engine_dir=engine_dir,
lora_dir=None,
rank=self.runtime_rank,
debug_mode=False,
lora_ckpt_source='hf')
self.runner = self.runner_cls.from_dir(**self.runner_kwargs)
self.last_prompt = None
self.last_output = None
def parse_input(
self,
input_text=None,
add_special_tokens=True,
max_input_length=923,
pad_id=None,
):
if self.pad_id is None:
self.pad_id = self.tokenizer.pad_token_id
batch_input_ids = []
for curr_text in input_text:
if self.prompt_template is not None:
curr_text = self.prompt_template.format(input_text=curr_text)
input_ids = self.tokenizer.encode(
curr_text,
add_special_tokens=add_special_tokens,
truncation=True,
max_length=max_input_length
)
batch_input_ids.append(input_ids)
batch_input_ids = [
torch.tensor(x, dtype=torch.int32) for x in batch_input_ids
]
return batch_input_ids
def decode_tokens(
self,
output_ids,
input_lengths,
sequence_lengths,
transcription_queue
):
batch_size, num_beams, _ = output_ids.size()
for batch_idx in range(batch_size):
if transcription_queue.qsize() != 0:
return None
inputs = output_ids[batch_idx][0][:input_lengths[batch_idx]].tolist()
input_text = self.tokenizer.decode(inputs, skip_special_tokens=True)
output = []
for beam in range(num_beams):
if transcription_queue.qsize() != 0:
return None
output_begin = input_lengths[batch_idx]
output_end = sequence_lengths[batch_idx][beam]
outputs = output_ids[batch_idx][beam][
output_begin:output_end].tolist()
output_text = self.tokenizer.decode(outputs, skip_special_tokens=True)
output.append(output_text)
return output
def format_prompt_chatml(self, prompt, conversation_history, system_prompt=""):
messages = []
formatted_prompt = ""
for user_prompt, llm_response in conversation_history:
formatted_prompt += f"<|user|>\n{user_prompt}<|end|>\n<|assistant|>\n{llm_response}<|end|>\n"
return f"{formatted_prompt}<|user|>\n{prompt}<|end|>\n<|assistant|>"
def format_prompt_qa(self, prompt, conversation_history):
formatted_prompt = ""
for user_prompt, llm_response in conversation_history:
formatted_prompt += f"Instruct: {user_prompt}\nOutput:{llm_response}\n"
return f"{formatted_prompt}Instruct: {prompt}\nOutput:"
def format_prompt_chat(self, prompt, conversation_history):
formatted_prompt = ""
for user_prompt, llm_response in conversation_history:
formatted_prompt += f"Alice: {user_prompt}\nBob:{llm_response}\n"
return f"{formatted_prompt}Alice: {prompt}\nBob:"
def run(
self,
model_path,
tokenizer_path,
phi_model_type=None,
transcription_queue=None,
llm_queue=None,
audio_queue=None,
input_text=None,
max_output_len=100,
max_attention_window_size=4096,
num_beams=1,
streaming=False,
streaming_interval=4,
debug=False,
):
self.phi_model_type = phi_model_type
if self.phi_model_type == "phi-2":
self.chat_format = self.format_prompt_qa
else:
self.chat_format = self.format_prompt_chatml
self.initialize_model(
model_path,
tokenizer_path,
)
logging.info("[LLM INFO:] Loaded LLM TensorRT Engine.")
conversation_history = {}
while True:
# Get the last transcription output from the queue
transcription_output = transcription_queue.get()
if transcription_queue.qsize() != 0:
continue
if transcription_output["uid"] not in conversation_history:
conversation_history[transcription_output["uid"]] = []
prompt = transcription_output['prompt'].strip()
# if prompt is same but EOS is True, we need that to send outputs to websockets
if self.last_prompt == prompt:
if self.last_output is not None and transcription_output["eos"]:
self.eos = transcription_output["eos"]
llm_queue.put({
"uid": transcription_output["uid"],
"llm_output": self.last_output,
"eos": self.eos,
"latency": self.infer_time
})
audio_queue.put({"llm_output": self.last_output, "eos": self.eos})
conversation_history[transcription_output["uid"]].append(
(transcription_output['prompt'].strip(), self.last_output[0].strip())
)
continue
input_text=[self.chat_format(prompt, conversation_history[transcription_output["uid"]])]
self.eos = transcription_output["eos"]
batch_input_ids = self.parse_input(
input_text=input_text,
add_special_tokens=True,
max_input_length=923,
pad_id=None,
)
input_lengths = [x.size(0) for x in batch_input_ids]
logging.info(f"[LLM INFO:] Running LLM Inference with WhisperLive prompt: {prompt}, eos: {self.eos}")
start = time.time()
with torch.no_grad():
outputs = self.runner.generate(
batch_input_ids,
max_new_tokens=max_output_len,
max_attention_window_size=max_attention_window_size,
end_id=self.end_id,
pad_id=self.pad_id,
temperature=1.0,
top_k=1,
top_p=0.0,
num_beams=num_beams,
length_penalty=1.0,
repetition_penalty=1.0,
stop_words_list=None,
bad_words_list=None,
lora_uids=None,
prompt_table_path=None,
prompt_tasks=None,
streaming=streaming,
output_sequence_lengths=True,
return_dict=True)
torch.cuda.synchronize()
if streaming:
for curr_outputs in throttle_generator(outputs, streaming_interval):
output_ids = curr_outputs['output_ids']
sequence_lengths = curr_outputs['sequence_lengths']
output = self.decode_tokens(
output_ids,
input_lengths,
sequence_lengths,
transcription_queue
)
if output is None:
break
# Interrupted by transcription queue
if output is None:
continue
else:
output_ids = outputs['output_ids']
sequence_lengths = outputs['sequence_lengths']
context_logits = None
generation_logits = None
if self.runner.gather_context_logits:
context_logits = outputs['context_logits']
if self.runner.gather_generation_logits:
generation_logits = outputs['generation_logits']
output = self.decode_tokens(
output_ids,
input_lengths,
sequence_lengths,
transcription_queue
)
self.infer_time = time.time() - start
# if self.eos:
if output is not None:
if self.phi_model_type == "phi-2":
output[0] = output.split("Instruct:")[0]
self.last_output = output
self.last_prompt = prompt
llm_queue.put({
"uid": transcription_output["uid"],
"llm_output": output,
"eos": self.eos,
"latency": self.infer_time
})
audio_queue.put({"llm_output": output, "eos": self.eos})
logging.info(f"[LLM INFO:] Output: {output[0]}\nLLM inference done in {self.infer_time} ms\n\n")
if self.eos:
conversation_history[transcription_output["uid"]].append(
(transcription_output['prompt'].strip(), output[0].strip())
)
self.last_prompt = None
self.last_output = None