Skip to content

Latest commit

 

History

History
1690 lines (1452 loc) · 59.9 KB

Spark存储体系.md

File metadata and controls

1690 lines (1452 loc) · 59.9 KB

概述

  • Spark存储体系是各个Driver和Executor实例中的BlockManager所组成的。

存储体系架构

存储体系架构

  • MemoryStore:内存存储,依赖于MemoryManager,负责对Block的内存存储。
  • DiskStore:磁盘存储。依赖于DiskBlockManager,负责对Block的磁盘存储。
  • BlockInfoManager:块信息管理器。负责对Block的元数据及锁资源进行管理。
  • DiskBlockManager:磁盘块管理器。对磁盘上的文件及目录的读写操作进行管理。
  • BlockManagerMaster:代理BlockManager与Driver上的BlockManagerMasterEndpoint通信。
  • BlockManagerMasterEndpoint:由Driver上的SparkEnv负责创建和注册到Driver的RpcEnv中。BlockManagerMasterEndpoint只存在于Driver的SparkEnv中,Driver或Executor上的BlockManagerMaster的driverEndpoint属性将持有BlockManagerMaster-Endpoint的RpcEndpointRef。BlockManagerMasterEndpoint主要对各个节点上的BlockManager、BlockManager与Executor的映射关系及Block位置信息(即Block所在的BlockManager)等进行管理。
  • BlockManagerSlaveEndpoint:每个Executor或Driver的SparkEnv中都有属于自己的BlockManagerSlaveEndpoint,分别由各自的SparkEnv负责创建和注册到各自的RpcEnv中。

基本概念

BlockManagerId

  • Dirver或Executor执行的SparkEnv都有自己的Blockmanager,这些Blockmanager位于不同的节点和实例上,BlockManager之间需要通过RpcEnv、shuffleClient及BlockTransferServer进行通信,每个BlockManager在集群中都有一个唯一标识。
  • Spark通过BlockaManagerId中的host、port、executorId等信息来区别BlockManager。
class BlockManagerId private (
    // 当前blockManager所载的实例ID,如果是driver,id为driver,否则由Master负责给各个Executor分配,格式为app-日期格式字符串-数字
    private var executorId_ : String,
    private var host_ : String,
    private var port_ : Int,
    //拓扑信息。
    private var topologyInfo_ : Option[String])
  extends Externalizable {

  private def this() = this(null, null, 0, None)  // For deserialization only

  def executorId: String = executorId_

  if (null != host_) {
    Utils.checkHost(host_)
    assert (port_ > 0)
  }

  def hostPort: String = {
    // DEBUG code
    Utils.checkHost(host)
    assert (port > 0)
    host + ":" + port
  }

  def host: String = host_

  def port: Int = port_

  def topologyInfo: Option[String] = topologyInfo_

  // 当前BlockManager所在的实例是否是Driver。此方法实际根据executorId_的值是否是driver来判断。
  def isDriver: Boolean = {
    executorId == SparkContext.DRIVER_IDENTIFIER ||
      executorId == SparkContext.LEGACY_DRIVER_IDENTIFIER
  }

  // 将BlockManagerId写入
  override def writeExternal(out: ObjectOutput): Unit = Utils.tryOrIOException {
    out.writeUTF(executorId_)
    out.writeUTF(host_)
    out.writeInt(port_)
    out.writeBoolean(topologyInfo_.isDefined)
    // we only write topologyInfo if we have it
    topologyInfo.foreach(out.writeUTF(_: String))
  }

  // 读取数据
  override def readExternal(in: ObjectInput): Unit = Utils.tryOrIOException {
    executorId_ = in.readUTF()
    host_ = in.readUTF()
    port_ = in.readInt()
    val isTopologyInfoAvailable = in.readBoolean()
    topologyInfo_ = if (isTopologyInfoAvailable) Option(in.readUTF()) else None
  }

  @throws(classOf[IOException])
  private def readResolve(): Object = BlockManagerId.getCachedBlockManagerId(this)

  override def toString: String = s"BlockManagerId($executorId, $host, $port, $topologyInfo)"

  override def hashCode: Int =
    ((executorId.hashCode * 41 + host.hashCode) * 41 + port) * 41 + topologyInfo.hashCode

  override def equals(that: Any): Boolean = that match {
    case id: BlockManagerId =>
      executorId == id.executorId &&
        port == id.port &&
        host == id.host &&
        topologyInfo == id.topologyInfo
    case _ =>
      false
  }
}

BlockId

  • Spark存储体系中,数据读写是以Block为单位的,每个Block都有一个唯一标识。
  • BlockId对象属性
 def name: String

  // convenience methods
  // 如果是RDD将转换为RDDBlockId
  def asRDDId: Option[RDDBlockId] = if (isRDD) Some(asInstanceOf[RDDBlockId]) else None
  // 当前BlockId是否是RddBlockId
  def isRDD: Boolean = isInstanceOf[RDDBlockId]
  // 是否ShuffleBlockId
  def isShuffle: Boolean = isInstanceOf[ShuffleBlockId]
  // 是否BroadcastBlockId
  def isBroadcast: Boolean = isInstanceOf[BroadcastBlockId]

StorageLevel

 val NONE = new StorageLevel(false, false, false, false)
  val DISK_ONLY = new StorageLevel(true, false, false, false)
  val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
  val MEMORY_ONLY = new StorageLevel(false, true, false, true)
  val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
  val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
  val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
  val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
  val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
  val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
  val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
  val OFF_HEAP = new StorageLevel(true, true, true, false, 1)

// 传输属性
   private var _useDisk: Boolean,
    private var _useMemory: Boolean,
    private var _useOffHeap: Boolean,
    private var _deserialized: Boolean,
    private var _replication: Int = 1

toInt

  • toInt方法实现,将boolean类型转换为整型
def toInt: Int = {
    var ret = 0
    if (_useDisk) {
      ret |= 8 // 1000 | 0000=1000
    }
    if (_useMemory) {
      ret |= 4 // 0100 | 0000 =0100
    }
    if (_useOffHeap) {
      ret |= 2  // 0010 | 0000 =0010
    }
    if (_deserialized) {
      ret |= 1  // 0001
    }
    ret  
  }
// 1000表示存储级别为允许写入磁盘;1100表示存储级别为允许写入磁盘和堆内存;1111表示存储级别为允许写入磁盘、堆内存及堆外内存,并且需要反序列化。

writeExternal

override def writeExternal(out: ObjectOutput): Unit = Utils.tryOrIOException {
    out.writeByte(toInt)
    out.writeByte(_replication)
  }

readExternal

 override def readExternal(in: ObjectInput): Unit = Utils.tryOrIOException {
    val flags = in.readByte()
    _useDisk = (flags & 8) != 0
    _useMemory = (flags & 4) != 0
    _useOffHeap = (flags & 2) != 0
    _deserialized = (flags & 1) != 0 // 0001 & 0001 =1 true
    _replication = in.readByte()
  }

BlockInfo

  • 描述块的元数据信息,包括存储级别,block类型,大小,锁信息等。
private[storage] class BlockInfo(
    // 存储级别
    val level: StorageLevel,
    // BlockInfo描述的Block的类型
    val classTag: ClassTag[_],
    // BlockInfo所描述的Block是否需要告知Master。
    val tellMaster: Boolean) {

  /**
   * The size of the block (in bytes)
   * block的大小
   */
  def size: Long = _size
  def size_=(s: Long): Unit = {
    _size = s
    checkInvariants()
  }
  private[this] var _size: Long = 0

  /**
   * The number of times that this block has been locked for reading.
   * BlockInfo所描述的Block被锁定读取的次数。
   */
  def readerCount: Int = _readerCount
  def readerCount_=(c: Int): Unit = {
    _readerCount = c
    checkInvariants()
  }
  private[this] var _readerCount: Int = 0

  /**
   * 任务尝试在对Block进行写操作前,首先必须获得对应BlockInfo的写锁。
   * _writerTask用于保存任务尝试的ID(每个任务在实际执行时,会多次尝试,每次尝试都会分配一个ID)。
   *
   * The task attempt id of the task which currently holds the write lock for this block, or
   * [[BlockInfo.NON_TASK_WRITER]] if the write lock is held by non-task code, or
   * [[BlockInfo.NO_WRITER]] if this block is not locked for writing.
   */
  def writerTask: Long = _writerTask
  def writerTask_=(t: Long): Unit = {
    _writerTask = t
    checkInvariants()
  }
  private[this] var _writerTask: Long = BlockInfo.NO_WRITER

  private def checkInvariants(): Unit = {
    // A block's reader count must be non-negative:
    assert(_readerCount >= 0)
    // A block is either locked for reading or for writing, but not for both at the same time:
    assert(_readerCount == 0 || _writerTask == BlockInfo.NO_WRITER)
  }

  checkInvariants()
}

BlockResult

  • 用于封装从本地的BlockManager中获取的Block数据及与Block相关联的度量数据。
private[spark] class BlockResult(
    // block及Block相关联的度量数据
    val data: Iterator[Any],
    // 读取block的方法,readMethod采用枚举类型DataReadMethod提供的Memory、Disk、Hadoop、Network四个枚举值。
    val readMethod: DataReadMethod.Value,
    // 读取block的字节长度                                
    val bytes: Long)

BlockStatus

@DeveloperApi
case class BlockStatus(storageLevel: StorageLevel, memSize: Long, diskSize: Long) {
  // 是否存储到存储体系中
  def isCached: Boolean = memSize + diskSize > 0
}

@DeveloperApi
object BlockStatus {
  def empty: BlockStatus = BlockStatus(StorageLevel.NONE, memSize = 0L, diskSize = 0L)
}

BlockInfoManager

  • 对BlockInfo进行一些简单管理,主要对Block的锁资源进行管理。

Block锁基本概念

  • BlockInfoManager是BlockManager内部的子组件之一,BlockInfoManager对Block的锁管理采用了共享锁与排他锁,其中读锁是共享锁,写锁是排他锁。

BlockInfoManager对Block的锁管理

BlockInfoManager对BlockId的锁管理

  • 由TaskAttemptId 0标记的任务尝试执行线程获取了BlockInfo A和BlockInfo B的写锁,并且获取了BlockInfo C和BlockInfo D的读锁。
  • 由TaskAttemptId 1标记的任务尝试执行线程获取了BlockInfo D的读锁。
  • 由TaskAttemptId 2标记的任务尝试执行线程多次获取了BlockInfo D的读锁,这说明Block的读锁是可以重入的。

Block锁的实现

registerTask

def registerTask(taskAttemptId: TaskAttemptId): Unit = synchronized {
    // 如果该taskAttemptId的读锁已经注册
    require(!readLocksByTask.contains(taskAttemptId),
      s"Task attempt $taskAttemptId is already registered")
    readLocksByTask(taskAttemptId) = ConcurrentHashMultiset.create()
  }

currentTaskAttemptId

  • 获取任务上下文TaskContext中当前正在执行的任务的TaskAttemptId。如果TaskContext中没有则返回BlockInfo.Not_Task_Writer
private def currentTaskAttemptId: TaskAttemptId = {
    Option(TaskContext.get()).map(_.taskAttemptId()).getOrElse(BlockInfo.NON_TASK_WRITER)
  }

lockForReading

 def lockForReading(
      // blockId                    
      blockId: BlockId,
      // 当存在写锁时是否阻塞               
      blocking: Boolean = true): Option[BlockInfo] = synchronized {
    logTrace(s"Task $currentTaskAttemptId trying to acquire read lock for $blockId")
    do {
      // 获取对应的BlockInfo
      infos.get(blockId) match {
        case None => return None
        case Some(info) =>
          // 如果没有写锁,读锁+1
          if (info.writerTask == BlockInfo.NO_WRITER) {
            info.readerCount += 1
            // 将currentTaskAttemptId加入读锁队列
            readLocksByTask(currentTaskAttemptId).add(blockId)
            logTrace(s"Task $currentTaskAttemptId acquired read lock for $blockId")
            return Some(info)
          }
      }
      // 如果开启阻塞,则等到写锁完成进行读取
      if (blocking) {
        wait()
      }
    } while (blocking)
    None
  }

lockForWriting

 def lockForWriting(
      blockId: BlockId,
      blocking: Boolean = true): Option[BlockInfo] = synchronized {
    logTrace(s"Task $currentTaskAttemptId trying to acquire write lock for $blockId")
    do {
      infos.get(blockId) match {
        case None => return None
        case Some(info) =>
          // 如果当前没有写锁,并且没有读锁
          if (info.writerTask == BlockInfo.NO_WRITER && info.readerCount == 0) {
            // 将当前TaskAttemptId赋值给_writerTask,表示目前该Block存在写锁
            info.writerTask = currentTaskAttemptId
            // 添加到写锁map中
            writeLocksByTask.addBinding(currentTaskAttemptId, blockId)
            logTrace(s"Task $currentTaskAttemptId acquired write lock for $blockId")
            // 返回info信息
            return Some(info)
          }
      }
      // 如果存在写锁或读锁阻塞,知道对方释放
      if (blocking) {
        wait()
      }
    } while (blocking)
    None
  }

unlock

 def unlock(blockId: BlockId, taskAttemptId: Option[TaskAttemptId] = None): Unit = synchronized {
    // 获取taskId,如果当前没传入就调用currentTaskAttemptId
    val taskId = taskAttemptId.getOrElse(currentTaskAttemptId)
    logTrace(s"Task $taskId releasing lock for $blockId")
    // 获取当前blockInfo
    val info = get(blockId).getOrElse {
      throw new IllegalStateException(s"Block $blockId not found")
    }
    // 如果存在写锁
    if (info.writerTask != BlockInfo.NO_WRITER) {
      // 将writerTask设置为不存在写锁
      info.writerTask = BlockInfo.NO_WRITER
      // 移除写锁在map中的存储
      writeLocksByTask.removeBinding(taskId, blockId)
    } else {
      assert(info.readerCount > 0, s"Block $blockId is not locked for reading")
      // 读锁可重入减1
      info.readerCount -= 1
      // 获取读锁集合
      val countsForTask: ConcurrentHashMultiset[BlockId] = readLocksByTask(taskId)
      // 移除该锁
      val newPinCountForTask: Int = countsForTask.remove(blockId, 1) - 1
      assert(newPinCountForTask >= 0,
        s"Task $taskId release lock on block $blockId more times than it acquired it")
    }
    // 唤醒全部wait
    notifyAll()
  }

downgradeLock

  • 锁降级,写锁变成读锁
def downgradeLock(blockId: BlockId): Unit = synchronized {
    logTrace(s"Task $currentTaskAttemptId downgrading write lock for $blockId")
    val info = get(blockId).get
    require(info.writerTask == currentTaskAttemptId,
      s"Task $currentTaskAttemptId tried to downgrade a write lock that it does not hold on" +
        s" block $blockId")
    // 释放写锁
    unlock(blockId)
    // 添加读锁
    val lockOutcome = lockForReading(blockId, blocking = false)
    assert(lockOutcome.isDefined)
  }

lockNewBlockForWriting

def lockNewBlockForWriting(
      blockId: BlockId,
      newBlockInfo: BlockInfo): Boolean = synchronized {
    logTrace(s"Task $currentTaskAttemptId trying to put $blockId")
    lockForReading(blockId) match {
        // 如果块已经存在,就没必要在获取写锁了
      case Some(info) =>
        // Block already exists. This could happen if another thread races with us to compute
        // the same block. In this case, just keep the read lock and return.
        false
      case None =>
        // Block does not yet exist or is removed, so we are free to acquire the write lock
        infos(blockId) = newBlockInfo
        lockForWriting(blockId)
        true
    }
  }

removeBlock

 def removeBlock(blockId: BlockId): Unit = synchronized {
    logTrace(s"Task $currentTaskAttemptId trying to remove block $blockId")
    // 获取BlockInfo
    infos.get(blockId) match {
      case Some(blockInfo) =>
        if (blockInfo.writerTask != currentTaskAttemptId) {
          throw new IllegalStateException(
            s"Task $currentTaskAttemptId called remove() on block $blockId without a write lock")
        } else {
          // 将block在内存中移除
          infos.remove(blockId)
          // 释放读写锁
          blockInfo.readerCount = 0
          blockInfo.writerTask = BlockInfo.NO_WRITER
          writeLocksByTask.removeBinding(currentTaskAttemptId, blockId)
        }
      case None =>
        throw new IllegalArgumentException(
          s"Task $currentTaskAttemptId called remove() on non-existent block $blockId")
    }
    // 唤醒全部阻塞操作
    notifyAll()
  }

DiskBlockManager

  • 负责为逻辑的Block与数据写入磁盘的位置之间建立逻辑的映射关系。

相关属性

private[spark] class DiskBlockManager(conf: SparkConf,
                                       deleteFilesOnStop: Boolean) extends Logging {
  // 本地子目录个数
  private[spark] val subDirsPerLocalDir = conf.getInt("spark.diskStore.subDirectories", 64)

  /* Create one local directory for each path mentioned in spark.local.dir; then, inside this
   * directory, create multiple subdirectories that we will hash files into, in order to avoid
   * having really large inodes at the top level. */
  // 本地目录数组,创建本地目录
  private[spark] val localDirs: Array[File] = createLocalDirs(conf)
  // 本地目录创建失败
  if (localDirs.isEmpty) {
    logError("Failed to create any local dir.")
    System.exit(ExecutorExitCode.DISK_STORE_FAILED_TO_CREATE_DIR)
  }
  // The content of subDirs is immutable but the content of subDirs(i) is mutable. And the content
  // of subDirs(i) is protected by the lock of subDirs(i)
  private val subDirs = Array.fill(localDirs.length)(new Array[File](subDirsPerLocalDir))

  // 添加shutdown钩子函数
  private val shutdownHook = addShutdownHook()

本地目录结构

createLocalDirs

 private def createLocalDirs(conf: SparkConf): Array[File] = {
   // 获取spark.local.dir配置
    Utils.getConfiguredLocalDirs(conf).flatMap { rootDir =>
      try {
        val localDir = Utils.createDirectory(rootDir, "blockmgr")
        logInfo(s"Created local directory at $localDir")
        Some(localDir)
      } catch {
        case e: IOException =>
          logError(s"Failed to create local dir in $rootDir. Ignoring this directory.", e)
          None
      }
    }
  }

addShutdownHook

 private def addShutdownHook(): AnyRef = {
    logDebug("Adding shutdown hook") // force eager creation of logger
    ShutdownHookManager.addShutdownHook(ShutdownHookManager.TEMP_DIR_SHUTDOWN_PRIORITY + 1) { () =>
      logInfo("Shutdown hook called")
      // 关闭DiskBlockManager
      DiskBlockManager.this.doStop()
    }
  }

本地目录

DiskBlockManager相关方法

getFile

 def getFile(filename: String): File = {
    // Figure out which local directory it hashes to, and which subdirectory in that
   // 获取非负数的hash值
    val hash = Utils.nonNegativeHash(filename)
    // 按照取余方式选中一级目录
    val dirId = hash % localDirs.length
    // 获取subDirId
    val subDirId = (hash / localDirs.length) % subDirsPerLocalDir

    // Create the subdirectory if it doesn't already exist
    val subDir = subDirs(dirId).synchronized {
      // 获取oldSubDir
      val old = subDirs(dirId)(subDirId)
      if (old != null) {
        old
      } else {
        val newDir = new File(localDirs(dirId), "%02x".format(subDirId))
        if (!newDir.exists() && !newDir.mkdir()) {
          throw new IOException(s"Failed to create local dir in $newDir.")
        }
        subDirs(dirId)(subDirId) = newDir
        newDir
      }
    }

    new File(subDir, filename)
  }
  • 调用Utils工具类的nonNegativeHash方法获取文件名的非负哈希值。
  • 从localDirs数组中按照取余方式获得选中的一级目录。
  • 哈希值除以一级目录的大小获得商,然后用商数与subDirsPerLocalDir取余获得的余数作为选中的二级目录。
  • 获取二级目录。如果二级目录不存在,则需要创建二级目录。
  • 返回二级目录下的文件。

containsBlock

 def containsBlock(blockId: BlockId): Boolean = {
    getFile(blockId.name).exists()
  }

getAllFiles

def getAllFiles(): Seq[File] = {
  // Get all the files inside the array of array of directories
  subDirs.flatMap { dir =>
    dir.synchronized {
      // Copy the content of dir because it may be modified in other threads
      dir.clone()
    }
  }.filter(_ != null).flatMap { dir =>
    val files = dir.listFiles()
    if (files != null) files else Seq.empty
  }
}

createTempLocalBlock

  • 为中间结果创建唯一的BlockId和文件,此文件将用于保存本地Block的数据。
 def createTempLocalBlock(): (TempLocalBlockId, File) = {
    // 创建中间临时结果本地BlockId
    var blockId = new TempLocalBlockId(UUID.randomUUID())
    // 如果存在则在生成
    while (getFile(blockId).exists()) {
      blockId = new TempLocalBlockId(UUID.randomUUID())
    }
    (blockId, getFile(blockId))
  }

createTempShuffleBlock

  • 创建唯一的BlockId和文件,用来存储Shuffle中间结果(即map任务的输出)。
def createTempShuffleBlock(): (TempShuffleBlockId, File) = {
    var blockId = new TempShuffleBlockId(UUID.randomUUID())
    while (getFile(blockId).exists()) {
      blockId = new TempShuffleBlockId(UUID.randomUUID())
    }
    (blockId, getFile(blockId))
  }

DiskStore

private[spark] class DiskStore(
    conf: SparkConf,
    diskManager: DiskBlockManager,
    securityManager: SecurityManager) extends Logging {

  private val minMemoryMapBytes = conf.getSizeAsBytes("spark.storage.memoryMapThreshold", "2m")
  private val maxMemoryMapBytes = conf.get(config.MEMORY_MAP_LIMIT_FOR_TESTS)
  // 存储blockId和对应的blockSize
  private val blockSizes = new ConcurrentHashMap[BlockId, Long]()

  def getSize(blockId: BlockId): Long = blockSizes.get(blockId)

  /**
   * Invokes the provided callback function to write the specific block.
   *
   * @throws IllegalStateException if the block already exists in the disk store.
   */
  def put(blockId: BlockId)(writeFunc: WritableByteChannel => Unit): Unit = {
    if (contains(blockId)) {
      throw new IllegalStateException(s"Block $blockId is already present in the disk store")
    }
    logDebug(s"Attempting to put block $blockId")
    val startTime = System.currentTimeMillis
    // 根据block从DiskBlockManager中获取file
    val file: File = diskManager.getFile(blockId)
    val out = new CountingWritableChannel(openForWrite(file))
    var threwException: Boolean = true
    try {
      writeFunc(out)
      blockSizes.put(blockId, out.getCount)
      threwException = false
    } finally {
      try {
        out.close()
      } catch {
        case ioe: IOException =>
          if (!threwException) {
            threwException = true
            throw ioe
          }
      } finally {
         if (threwException) {
          remove(blockId)
        }
      }
    }
    val finishTime = System.currentTimeMillis
    logDebug("Block %s stored as %s file on disk in %d ms".format(
      file.getName,
      Utils.bytesToString(file.length()),
      finishTime - startTime))
  }

  def putBytes(blockId: BlockId, bytes: ChunkedByteBuffer): Unit = {
    put(blockId) { channel: WritableByteChannel =>
      bytes.writeFully(channel)
    }
  }

  def getBytes(blockId: BlockId): BlockData = {
    val file = diskManager.getFile(blockId.name)
    val blockSize = getSize(blockId)

    securityManager.getIOEncryptionKey() match {
      case Some(key) =>
        // Encrypted blocks cannot be memory mapped; return a special object that does decryption
        // and provides InputStream / FileRegion implementations for reading the data.
        new EncryptedBlockData(file, blockSize, conf, key)

      case _ =>
        new DiskBlockData(minMemoryMapBytes, maxMemoryMapBytes, file, blockSize)
    }
  }

  def remove(blockId: BlockId): Boolean = {
    blockSizes.remove(blockId)
    val file = diskManager.getFile(blockId.name)
    if (file.exists()) {
      val ret = file.delete()
      if (!ret) {
        logWarning(s"Error deleting ${file.getPath()}")
      }
      ret
    } else {
      false
    }
  }

  def contains(blockId: BlockId): Boolean = {
    val file = diskManager.getFile(blockId.name)
    file.exists()
  }

  private def openForWrite(file: File): WritableByteChannel = {
    val out = new FileOutputStream(file).getChannel()
    try {
      securityManager.getIOEncryptionKey().map { key =>
        CryptoStreamUtils.createWritableChannel(out, conf, key)
      }.getOrElse(out)
    } catch {
      case e: Exception =>
        Closeables.close(out, true)
        file.delete()
        throw e
    }
  }

MemoryManager

内存池模型

  • 内存池实质上是对物理内存的逻辑规划,协助Spark任务在运行时合理地使用内存资源。Spark将内存从逻辑上区分为堆内存和堆外内存,称为内存模式(MemoryMode)。这里的堆内存只是Jvm堆的一部分,堆外内存是Spark使用Unsafe的API直接在工作节点的系统内存中开辟的空间。
@Private
public enum MemoryMode {
  ON_HEAP,
  OFF_HEAP
}

MeoryPool

// lock对内存池提供线程安全保证的锁对象
private[memory] abstract class MemoryPool(lock: Object) {

  /**
   * 内存池大小,单位字节
   */
  @GuardedBy("lock")
  private[this] var _poolSize: Long = 0

  /**
   * Returns the current size of the pool, in bytes.
   */
  final def poolSize: Long = lock.synchronized {
    _poolSize
  }

  /**
   * Returns the amount of free memory in the pool, in bytes.
   */
  final def memoryFree: Long = lock.synchronized {
    _poolSize - memoryUsed
  }

  /**
   * Expands the pool by `delta` bytes.
   */
  final def incrementPoolSize(delta: Long): Unit = lock.synchronized {
    require(delta >= 0)
    _poolSize += delta
  }

  /**
   * Shrinks the pool by `delta` bytes.
   */
  final def decrementPoolSize(delta: Long): Unit = lock.synchronized {
    require(delta >= 0)
    require(delta <= _poolSize)
    require(_poolSize - delta >= memoryUsed)
    _poolSize -= delta
  }

  /**
   * Returns the amount of used memory in this pool (in bytes).
   */
  def memoryUsed: Long

内存模型

  • PoolSize
    • memoryUsed
    • memoryFree

StorageMemoryPool

  • 存储物理内存的逻辑抽象,通过对存储内存的逻辑管理,提高Spark存储体系对内存的使用效率。
private[memory] class StorageMemoryPool(
    lock: Object,
    memoryMode: MemoryMode
  ) extends MemoryPool(lock) with Logging {

  /**
   * Storage内存池名称
   */
  private[this] val poolName: String = memoryMode match {
    case MemoryMode.ON_HEAP => "on-heap storage"
    case MemoryMode.OFF_HEAP => "off-heap storage"
  }

  @GuardedBy("lock")
  private[this] var _memoryUsed: Long = 0L

  /**
    * 使用内存量
    * @return
    */
  override def memoryUsed: Long = lock.synchronized {
    _memoryUsed
  }

  /**
   * memoryStore
   */
  private var _memoryStore: MemoryStore = _
  def memoryStore: MemoryStore = {
    if (_memoryStore == null) {
      throw new IllegalStateException("memory store not initialized yet")
    }
    _memoryStore
  }

  /**
   * Set the [[MemoryStore]] used by this manager to evict cached blocks.
   * This must be set after construction due to initialization ordering constraints.
   */
  final def setMemoryStore(store: MemoryStore): Unit = {
    _memoryStore = store
  }

  /**
   * 申请内存的N bytes换成给定的block
   * Acquire N bytes of memory to cache the given block, evicting existing ones if necessary.
   *
   * @return whether all N bytes were successfully granted.
   */
  def acquireMemory(blockId: BlockId, numBytes: Long): Boolean = lock.synchronized {
    val numBytesToFree = math.max(0, numBytes - memoryFree)
    acquireMemory(blockId, numBytes, numBytesToFree)
  }

  /**
   * Acquire N bytes of storage memory for the given block, evicting existing ones if necessary.
   *
   * @param blockId the ID of the block we are acquiring storage memory for
   * @param numBytesToAcquire the size of this block
   * @param numBytesToFree the amount of space to be freed through evicting blocks
   * @return whether all N bytes were successfully granted.
   */
  def acquireMemory(
      blockId: BlockId,
      numBytesToAcquire: Long,
      numBytesToFree: Long): Boolean = lock.synchronized {
    assert(numBytesToAcquire >= 0)
    assert(numBytesToFree >= 0)
    assert(memoryUsed <= poolSize)
    // 如果numBytesToFree大于0,说明memoryFree内存不足,需要使用内存
    if (numBytesToFree > 0) {
      memoryStore.evictBlocksToFreeSpace(Some(blockId), numBytesToFree, memoryMode)
    }
    // 释放内存后继续判断是否内足够可用内存可以申请
    // NOTE: If the memory store evicts blocks, then those evictions will synchronously call
    // back into this StorageMemoryPool in order to free memory. Therefore, these variables
    // should have been updated.
    val enoughMemory = numBytesToAcquire <= memoryFree
    if (enoughMemory) {
      _memoryUsed += numBytesToAcquire
    }
    enoughMemory
  }

  def releaseMemory(size: Long): Unit = lock.synchronized {
    if (size > _memoryUsed) {
      logWarning(s"Attempted to release $size bytes of storage " +
        s"memory when we only have ${_memoryUsed} bytes")
      _memoryUsed = 0
    } else {
      _memoryUsed -= size
    }
  }

  def releaseAllMemory(): Unit = lock.synchronized {
    _memoryUsed = 0
  }

  /**
   * Free space to shrink the size of this storage memory pool by `spaceToFree` bytes.
   * Note: this method doesn't actually reduce the pool size but relies on the caller to do so.
   *
   * @return number of bytes to be removed from the pool's capacity.
   * 用于释放指定大小的空间,缩小内存池的大小。
   */
  def freeSpaceToShrinkPool(spaceToFree: Long): Long = lock.synchronized {
    // 计算最小的空闲逻辑内存
    val spaceFreedByReleasingUnusedMemory = math.min(spaceToFree, memoryFree)
    // 计算剩余的空闲内存
    val remainingSpaceToFree = spaceToFree - spaceFreedByReleasingUnusedMemory
    // 如果大于0
    if (remainingSpaceToFree > 0) {
      // If reclaiming free memory did not adequately shrink the pool, begin evicting blocks:
      // 后收其他block的内存
      val spaceFreedByEviction =
        memoryStore.evictBlocksToFreeSpace(None, remainingSpaceToFree, memoryMode)
      // When a block is released, BlockManager.dropFromMemory() calls releaseMemory(), so we do
      // not need to decrement _memoryUsed here. However, we do need to decrement the pool size.
      spaceFreedByReleasingUnusedMemory + spaceFreedByEviction
    } else {
      spaceFreedByReleasingUnusedMemory
    }
  }
}

MemoryManager模型

MemoryManager属性

/**
 *
 * @param conf spark集群配置
 * @param numCores CPU核数
 * @param onHeapStorageMemory 堆内Storage区域内存
 * @param onHeapExecutionMemory  堆内Execution内存
 */
private[spark] abstract class MemoryManager(
    conf: SparkConf,
    numCores: Int,
    onHeapStorageMemory: Long,
    onHeapExecutionMemory: Long) extends Logging {

  // -- Methods related to memory allocation policies and bookkeeping ------------------------------

  /**
    *  堆内/堆外,内存管理池
    */
  @GuardedBy("this")
  protected val onHeapStorageMemoryPool = new StorageMemoryPool(this, MemoryMode.ON_HEAP)
  @GuardedBy("this")
  protected val offHeapStorageMemoryPool = new StorageMemoryPool(this, MemoryMode.OFF_HEAP)
  @GuardedBy("this")
  protected val onHeapExecutionMemoryPool = new ExecutionMemoryPool(this, MemoryMode.ON_HEAP)
  @GuardedBy("this")
  protected val offHeapExecutionMemoryPool = new ExecutionMemoryPool(this, MemoryMode.OFF_HEAP)

  onHeapStorageMemoryPool.incrementPoolSize(onHeapStorageMemory)
  onHeapExecutionMemoryPool.incrementPoolSize(onHeapExecutionMemory)

  //"spark.memory.offHeap.size" 最大堆外内存
  protected[this] val maxOffHeapMemory = conf.get(MEMORY_OFFHEAP_SIZE)
  // 堆外storage区域内存
  protected[this] val offHeapStorageMemory =
    (maxOffHeapMemory * conf.getDouble("spark.memory.storageFraction", 0.5)).toLong

  // 初始化堆外execution poolSize
  offHeapExecutionMemoryPool.incrementPoolSize(maxOffHeapMemory - offHeapStorageMemory)
  offHeapStorageMemoryPool.incrementPoolSize(offHeapStorageMemory)

MemoryManager内存模型

  • 毫不相干的onHeapStorageMemoryPoolonHeapExecutionMemory-Pool合在了一起,将堆内存作为一个整体看待。而且onHeapStorageMemoryPool与onHeap-ExecutionMemoryPool之间,offHeapStorageMemoryPool与offHeapExecutionMemoryPool之间的实线也调整为虚线,表示它们之间都是“软”边界。存储方或计算方的空闲空间(即memoryFree表示的区域)都可以借给另一方使用

UnifiedMemoryManager

private[spark] class UnifiedMemoryManager private[memory] (
    conf: SparkConf,
    val maxHeapMemory: Long,
    onHeapStorageRegionSize: Long,
    numCores: Int)
  extends MemoryManager(
    conf,
    numCores,
    onHeapStorageRegionSize,
    maxHeapMemory - onHeapStorageRegionSize) {

  /**
   * 判断内存大小
   */
  private def assertInvariants(): Unit = {
    assert(onHeapExecutionMemoryPool.poolSize + onHeapStorageMemoryPool.poolSize == maxHeapMemory)
    assert(
      offHeapExecutionMemoryPool.poolSize + offHeapStorageMemoryPool.poolSize == maxOffHeapMemory)
  }

  assertInvariants()

  /**
   * 最大堆内内存
   * @return
   */
  override def maxOnHeapStorageMemory: Long = synchronized {
    maxHeapMemory - onHeapExecutionMemoryPool.memoryUsed
  }

  override def maxOffHeapStorageMemory: Long = synchronized {
    maxOffHeapMemory - offHeapExecutionMemoryPool.memoryUsed
  }

  /**
   * Try to acquire up to `numBytes` of execution memory for the current task and return the
   * number of bytes obtained, or 0 if none can be allocated.
   *
   * This call may block until there is enough free memory in some situations, to make sure each
   * task has a chance to ramp up to at least 1 / 2N of the total memory pool (where N is the # of
   * active tasks) before it is forced to spill. This can happen if the number of tasks increase
   * but an older task had a lot of memory already.
   */
  override private[memory] def acquireExecutionMemory(
      numBytes: Long,
      taskAttemptId: Long,
      memoryMode: MemoryMode): Long = synchronized {
    assertInvariants()
    assert(numBytes >= 0)
    val (executionPool, storagePool, storageRegionSize, maxMemory) = memoryMode match {
      case MemoryMode.ON_HEAP => (
        onHeapExecutionMemoryPool,
        onHeapStorageMemoryPool,
        onHeapStorageRegionSize,
        maxHeapMemory)
      case MemoryMode.OFF_HEAP => (
        offHeapExecutionMemoryPool,
        offHeapStorageMemoryPool,
        offHeapStorageMemory,
        maxOffHeapMemory)
    }

    /**
     * 申请storge区域的内存到execution中使用
     * Grow the execution pool by evicting cached blocks, thereby shrinking the storage pool.
     *
     * When acquiring memory for a task, the execution pool may need to make multiple
     * attempts. Each attempt must be able to evict storage in case another task jumps in
     * and caches a large block between the attempts. This is called once per attempt.
     */
    def maybeGrowExecutionPool(extraMemoryNeeded: Long): Unit = {
      if (extraMemoryNeeded > 0) {
        // There is not enough free memory in the execution pool, so try to reclaim memory from
        // storage. We can reclaim any free memory from the storage pool. If the storage pool
        // has grown to become larger than `storageRegionSize`, we can evict blocks and reclaim
        // the memory that storage has borrowed from execution.
        val memoryReclaimableFromStorage: Long = math.max(
          storagePool.memoryFree,
          storagePool.poolSize - storageRegionSize)
        if (memoryReclaimableFromStorage > 0) {
          // Only reclaim as much space as is necessary and available:
          val spaceToReclaim = storagePool.freeSpaceToShrinkPool(
            math.min(extraMemoryNeeded, memoryReclaimableFromStorage))
          storagePool.decrementPoolSize(spaceToReclaim)
          executionPool.incrementPoolSize(spaceToReclaim)
        }
      }
    }

    /**
     * The size the execution pool would have after evicting storage memory.
     *
     * The execution memory pool divides this quantity among the active tasks evenly to cap
     * the execution memory allocation for each task. It is important to keep this greater
     * than the execution pool size, which doesn't take into account potential memory that
     * could be freed by evicting storage. Otherwise we may hit SPARK-12155.
     *
     * Additionally, this quantity should be kept below `maxMemory` to arbitrate fairness
     * in execution memory allocation across tasks, Otherwise, a task may occupy more than
     * its fair share of execution memory, mistakenly thinking that other tasks can acquire
     * the portion of storage memory that cannot be evicted.
     */
    def computeMaxExecutionPoolSize(): Long = {
      maxMemory - math.min(storagePool.memoryUsed, storageRegionSize)
    }

    executionPool.acquireMemory(
      numBytes, taskAttemptId, maybeGrowExecutionPool, () => computeMaxExecutionPoolSize)
  }

  override def acquireStorageMemory(
      blockId: BlockId,
      numBytes: Long,
      memoryMode: MemoryMode): Boolean = synchronized {
    assertInvariants()
    assert(numBytes >= 0)
    val (executionPool, storagePool, maxMemory) = memoryMode match {
      case MemoryMode.ON_HEAP => (
        onHeapExecutionMemoryPool,
        onHeapStorageMemoryPool,
        maxOnHeapStorageMemory)
      case MemoryMode.OFF_HEAP => (
        offHeapExecutionMemoryPool,
        offHeapStorageMemoryPool,
        maxOffHeapStorageMemory)
    }
    // 超过最大内存限制
    if (numBytes > maxMemory) {
      // Fail fast if the block simply won't fit
      logInfo(s"Will not store $blockId as the required space ($numBytes bytes) exceeds our " +
        s"memory limit ($maxMemory bytes)")
      return false
    }
    // 如果大于storagePool的free内存
    if (numBytes > storagePool.memoryFree) {
      // There is not enough free memory in the storage pool, so try to borrow free memory from
      // the execution pool.
      // 尝试区execution申请内存
      // fixme 这里storage区域不足,去申请execution区域内存,但是这里没有校验execution+storge的free内存是否满足申请,如果不满足还需要走到最终storagePool后才能感知,
      // fixme 然后去尝试回收其他block的内存,为什么不能在这里直接就进行尝试,回收其他block,链路不用在走下去
      val memoryBorrowedFromExecution = Math.min(executionPool.memoryFree,
        numBytes - storagePool.memoryFree)
      executionPool.decrementPoolSize(memoryBorrowedFromExecution)
      storagePool.incrementPoolSize(memoryBorrowedFromExecution)
    }
    storagePool.acquireMemory(blockId, numBytes)
  }

  override def acquireUnrollMemory(
      blockId: BlockId,
      numBytes: Long,
      memoryMode: MemoryMode): Boolean = synchronized {
    acquireStorageMemory(blockId, numBytes, memoryMode)
  }
}

object UnifiedMemoryManager {

  // Set aside a fixed amount of memory for non-storage, non-execution purposes.
  // This serves a function similar to `spark.memory.fraction`, but guarantees that we reserve
  // sufficient memory for the system even for small heaps. E.g. if we have a 1GB JVM, then
  // the memory used for execution and storage will be (1024 - 300) * 0.6 = 434MB by default.
  private val RESERVED_SYSTEM_MEMORY_BYTES = 300 * 1024 * 1024

  def apply(conf: SparkConf, numCores: Int): UnifiedMemoryManager = {
    val maxMemory = getMaxMemory(conf)
    new UnifiedMemoryManager(
      conf,
      maxHeapMemory = maxMemory,
      onHeapStorageRegionSize =
        (maxMemory * conf.getDouble("spark.memory.storageFraction", 0.5)).toLong,
      numCores = numCores)
  }

  /**
   * 返回storage和execution区域共享内存部分
   * Return the total amount of memory shared between execution and storage, in bytes.
   */
  private def getMaxMemory(conf: SparkConf): Long = {
    val systemMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
    val reservedMemory = conf.getLong("spark.testing.reservedMemory",
      if (conf.contains("spark.testing")) 0 else RESERVED_SYSTEM_MEMORY_BYTES)
    val minSystemMemory = (reservedMemory * 1.5).ceil.toLong
    if (systemMemory < minSystemMemory) {
      throw new IllegalArgumentException(s"System memory $systemMemory must " +
        s"be at least $minSystemMemory. Please increase heap size using the --driver-memory " +
        s"option or spark.driver.memory in Spark configuration.")
    }
    // SPARK-12759 Check executor memory to fail fast if memory is insufficient
    if (conf.contains("spark.executor.memory")) {
      // executor内存
      val executorMemory = conf.getSizeAsBytes("spark.executor.memory")
      if (executorMemory < minSystemMemory) {
        throw new IllegalArgumentException(s"Executor memory $executorMemory must be at least " +
          s"$minSystemMemory. Please increase executor memory using the " +
          s"--executor-memory option or spark.executor.memory in Spark configuration.")
      }
    }
    val usableMemory = systemMemory - reservedMemory
    val memoryFraction = conf.getDouble("spark.memory.fraction", 0.6)
    (usableMemory * memoryFraction).toLong
  }
}

StaticMemoryManager

  • Exection和Storage区域不能互相使用对方的内存。

MemoryStore

  • MemoryStore负责将Block存储到内存。Spark通过将广播数据、RDD、Shuffle数据存储到内存,减少了对磁盘I/O的依赖,提高了程序的读写效率。

内存模型

内存模型

  • 整个MemoryStore的存储分为三块:一块是MemoryStore的entries属性持有的很多MemoryEntry所占据的内存blocksMemoryUsed;一块是onHeapUnroll-MemoryMap或offHeapUnrollMemoryMap中使用展开方式占用的内存currentUnroll-Memory。展开Block的行为类似于人们生活中的“占座”,一间教室里有些座位有人,有些则空着。在座位上放一本书表示有人正在使用,那么别人就不会坐这些座位。这可以防止在你需要座位的时候,却发现已经没有了位置。这样可以防止在向内存真正写入数据时,内存不足发生溢出。blocksMemoryUsed和currentUnrollMemory的空间之和是已经使用的空间,用memoryUsed表示。还有一块内存没有任何标记,表示未使用。

Block的抽象模式

/**
 * Block的抽象形式
 * @tparam T
 */
private sealed trait MemoryEntry[T] {
  // block当前大小
  def size: Long
  // block存入内存的模式
  def memoryMode: MemoryMode
  // block的类型标志
  def classTag: ClassTag[T]
}
// 反序列化后的MemoryEntry
private case class DeserializedMemoryEntry[T](
    value: Array[T],
    size: Long,
    classTag: ClassTag[T]) extends MemoryEntry[T] {
  val memoryMode: MemoryMode = MemoryMode.ON_HEAP
}

/**
 * 序列化后的MemoryEntry
 * @param buffer
 * @param memoryMode
 * @param classTag
 * @tparam T
 */
private case class SerializedMemoryEntry[T](
    buffer: ChunkedByteBuffer,
    memoryMode: MemoryMode,
    classTag: ClassTag[T]) extends MemoryEntry[T] {
  def size: Long = buffer.size
}

BlockManager

BlockManager初始化

 def initialize(appId: String): Unit = {
    // blockTransferService初始化
    blockTransferService.init(this)
    // 初始化shuffle client
    shuffleClient.init(appId)

    // 获取block副本策略
    blockReplicationPolicy = {
      val priorityClass = conf.get(
        "spark.storage.replication.policy", classOf[RandomBlockReplicationPolicy].getName)
      val clazz = Utils.classForName(priorityClass)
      val ret = clazz.newInstance.asInstanceOf[BlockReplicationPolicy]
      logInfo(s"Using $priorityClass for block replication policy")
      ret
    }

    val id =
      BlockManagerId(executorId, blockTransferService.hostName, blockTransferService.port, None)

    // 注册salveblockManager
    val idFromMaster = master.registerBlockManager(
      id,
      maxOnHeapMemory,
      maxOffHeapMemory,
      slaveEndpoint)

    blockManagerId = if (idFromMaster != null) idFromMaster else id

    shuffleServerId = if (externalShuffleServiceEnabled) {
      logInfo(s"external shuffle service port = $externalShuffleServicePort")
      BlockManagerId(executorId, blockTransferService.hostName, externalShuffleServicePort)
    } else {
      blockManagerId
    }

    // Register Executors' configuration with the local shuffle service, if one should exist.
    if (externalShuffleServiceEnabled && !blockManagerId.isDriver) {
      registerWithExternalShuffleServer()
    }

    logInfo(s"Initialized BlockManager: $blockManagerId")
  }

BlockManager相关方法

reregister

  def reregister(): Unit = {
    // TODO: We might need to rate limit re-registering.
    logInfo(s"BlockManager $blockManagerId re-registering with master")
    // master重新注册blockManager
    master.registerBlockManager(blockManagerId, maxOnHeapMemory, maxOffHeapMemory, slaveEndpoint)
    // 上报全部的block
    reportAllBlocks()
  }

//reportAllBlocks
private def reportAllBlocks(): Unit = {
    logInfo(s"Reporting ${blockInfoManager.size} blocks to the master.")
    for ((blockId, info) <- blockInfoManager.entries) {
      val status: BlockStatus = getCurrentBlockStatus(blockId, info)
      // 如果开启告知master属性,然后上报block状态信息
      if (info.tellMaster && !tryToReportBlockStatus(blockId, status)) {
        logError(s"Failed to report $blockId to master; giving up.")
        return
      }
    }
  }

//getCurrentBlockStatus
  private def getCurrentBlockStatus(blockId: BlockId, info: BlockInfo): BlockStatus = {
    info.synchronized {
      info.level match {
        case null =>
          BlockStatus.empty
        case level: StorageLevel =>
          val inMem = level.useMemory && memoryStore.contains(blockId)
          val onDisk = level.useDisk && diskStore.contains(blockId)
          val deserialized = if (inMem) level.deserialized else false
          val replication = if (inMem  || onDisk) level.replication else 1
          val storageLevel = StorageLevel(
            useDisk = onDisk,
            useMemory = inMem,
            useOffHeap = level.useOffHeap,
            deserialized = deserialized,
            replication = replication)
          val memSize = if (inMem) memoryStore.getSize(blockId) else 0L
          val diskSize = if (onDisk) diskStore.getSize(blockId) else 0L
          BlockStatus(storageLevel, memSize, diskSize)
      }
    }
  }

//tryToReportBlockStatus
 private def tryToReportBlockStatus(
      blockId: BlockId,
      status: BlockStatus,
      droppedMemorySize: Long = 0L): Boolean = {
    val storageLevel = status.storageLevel
    val inMemSize = Math.max(status.memSize, droppedMemorySize)
    val onDiskSize = status.diskSize
    // 发送消息给driverEndpoint
    master.updateBlockInfo(blockManagerId, blockId, storageLevel, inMemSize, onDiskSize)
  }

getLocalBytes

  def getLocalBytes(blockId: BlockId): Option[BlockData] = {
    logDebug(s"Getting local block $blockId as bytes")
    // As an optimization for map output fetches, if the block is for a shuffle, return it
    // without acquiring a lock; the disk store never deletes (recent) items so this should work
    // 如果当前block是shuffleBlock,获取shuffleBlock解析器
    if (blockId.isShuffle) {
      val shuffleBlockResolver = shuffleManager.shuffleBlockResolver
      // TODO: This should gracefully handle case where local block is not available. Currently
      // downstream code will throw an exception.
      // 封装成ChunkedByteBuffer
      val buf = new ChunkedByteBuffer(
        shuffleBlockResolver.getBlockData(blockId.asInstanceOf[ShuffleBlockId]).nioByteBuffer())
      Some(new ByteBufferBlockData(buf, true))
    } else {
      // 添加读锁,从本地获取bytes,然后解析BlockInfo解析为对应的BlockData
      blockInfoManager.lockForReading(blockId).map { info => doGetLocalBytes(blockId, info) }
    }
  }

//shuffleBlock
override def getBlockData(blockId: ShuffleBlockId): ManagedBuffer = {
    // The block is actually going to be a range of a single map output file for this map, so
    // find out the consolidated file, then the offset within that from our index
    // 获取IndexFile
    val indexFile = getIndexFile(blockId.shuffleId, blockId.mapId)

    // SPARK-22982: if this FileInputStream's position is seeked forward by another piece of code
    // which is incorrectly using our file descriptor then this code will fetch the wrong offsets
    // (which may cause a reducer to be sent a different reducer's data). The explicit position
    // checks added here were a useful debugging aid during SPARK-22982 and may help prevent this
    // class of issue from re-occurring in the future which is why they are left here even though
    // SPARK-22982 is fixed.
    val channel = Files.newByteChannel(indexFile.toPath)
    channel.position(blockId.reduceId * 8L)
    val in = new DataInputStream(Channels.newInputStream(channel))
    try {
      val offset = in.readLong()
      val nextOffset = in.readLong()
      val actualPosition = channel.position()
      val expectedPosition = blockId.reduceId * 8L + 16
      if (actualPosition != expectedPosition) {
        throw new Exception(s"SPARK-22982: Incorrect channel position after index file reads: " +
          s"expected $expectedPosition but actual position was $actualPosition.")
      }
      new FileSegmentManagedBuffer(
        transportConf,
        // 获取dataFile
        getDataFile(blockId.shuffleId, blockId.mapId),
        offset,
        nextOffset - offset)
    } finally {
      in.close()
    }
  }


// 如果不是shuffleBlock
 private def doGetLocalBytes(blockId: BlockId, info: BlockInfo): BlockData = {
    // 获取存储级别,根据不同的存储级别判断从diskStore或memoryStore获取BlockData
    val level = info.level
    logDebug(s"Level for block $blockId is $level")
    // In order, try to read the serialized bytes from memory, then from disk, then fall back to
    // serializing in-memory objects, and, finally, throw an exception if the block does not exist.
    if (level.deserialized) {
      // Try to avoid expensive serialization by reading a pre-serialized copy from disk:
      if (level.useDisk && diskStore.contains(blockId)) {
        // Note: we purposely do not try to put the block back into memory here. Since this branch
        // handles deserialized blocks, this block may only be cached in memory as objects, not
        // serialized bytes. Because the caller only requested bytes, it doesn't make sense to
        // cache the block's deserialized objects since that caching may not have a payoff.
        diskStore.getBytes(blockId)
      } else if (level.useMemory && memoryStore.contains(blockId)) {
        // The block was not found on disk, so serialize an in-memory copy:
        new ByteBufferBlockData(serializerManager.dataSerializeWithExplicitClassTag(
          blockId, memoryStore.getValues(blockId).get, info.classTag), true)
      } else {
        // memoryStore没有数据
        handleLocalReadFailure(blockId)
      }
    } else {  // storage level is serialized
      if (level.useMemory && memoryStore.contains(blockId)) {
        new ByteBufferBlockData(memoryStore.getBytes(blockId).get, false)
      } else if (level.useDisk && diskStore.contains(blockId)) {
        val diskData = diskStore.getBytes(blockId)
        maybeCacheDiskBytesInMemory(info, blockId, level, diskData)
          .map(new ByteBufferBlockData(_, false))
          .getOrElse(diskData)
      } else {
        handleLocalReadFailure(blockId)
      }
    }
  }

getBlockData

override def getBlockData(blockId: BlockId): ManagedBuffer = {
    // 如果是shuffleBlock
    if (blockId.isShuffle) {
      shuffleManager.shuffleBlockResolver.getBlockData(blockId.asInstanceOf[ShuffleBlockId])
    } else {
      // 获取LocalBlockData
      getLocalBytes(blockId) match {
        case Some(blockData) =>
          new BlockManagerManagedBuffer(blockInfoManager, blockId, blockData, true)
          // 如果从找不到local BlockData
        case None =>
          // If this block manager receives a request for a block that it doesn't have then it's
          // likely that the master has outdated block statuses for this block. Therefore, we send
          // an RPC so that this block is marked as being unavailable from this block manager.
          // 上报BlockStatus
          reportBlockStatus(blockId, BlockStatus.empty)
          throw new BlockNotFoundException(blockId.toString)
      }
    }
  }

//reportBlockStatus
  private def reportBlockStatus(
      blockId: BlockId,
      status: BlockStatus,
      droppedMemorySize: Long = 0L): Unit = {
    // 上报失败,需要重新注册
    val needReregister = !tryToReportBlockStatus(blockId, status, droppedMemorySize)
    if (needReregister) {
      logInfo(s"Got told to re-register updating block $blockId")
      // Re-registering will report our new block for free.
      asyncReregister()
    }
    logDebug(s"Told master about block $blockId")
  }

getStatus

 def getStatus(blockId: BlockId): Option[BlockStatus] = {
    blockInfoManager.get(blockId).map { info =>
      val memSize = if (memoryStore.contains(blockId)) memoryStore.getSize(blockId) else 0L
      val diskSize = if (diskStore.contains(blockId)) diskStore.getSize(blockId) else 0L
      BlockStatus(info.level, memSize = memSize, diskSize = diskSize)
    }
  }

getMatchingBlockIds

def getMatchingBlockIds(filter: BlockId => Boolean): Seq[BlockId] = {
    // The `toArray` is necessary here in order to force the list to be materialized so that we
    // don't try to serialize a lazy iterator when responding to client requests.
    // info中全部的blockId 获取全部disk中的block
    (blockInfoManager.entries.map(_._1) ++ diskBlockManager.getAllBlocks())
      .filter(filter)
      .toArray
      .toSeq
  }

getRemoteValues

 private def getRemoteValues[T: ClassTag](blockId: BlockId): Option[BlockResult] = {
    val ct = implicitly[ClassTag[T]]
    getRemoteBytes(blockId).map { data =>
      val values =
        serializerManager.dataDeserializeStream(blockId, data.toInputStream(dispose = true))(ct)
      new BlockResult(values, DataReadMethod.Network, data.size)
    }
  }

BlockManagerMaster

  • BlockManagerMaster的作用是对存在于Executor或Driver上的BlockManager进行统一管理。Executor与Driver关于BlockManager的交互都依赖于BlockManagerMaster,比如Executor需要向Driver发送注册BlockManager、更新Executor上Block的最新信息、询问所需要Block目前所在的位置及当Executor运行结束需要将此Executor移除等。
  • Driver上的BlockManagerMaster会实例化并且注册BlockManagerMasterEndpoint。无论是Driver还是Executor,它们的BlockManagerMaster的driverEndpoint属性都将持有BlockManagerMasterEndpoint的RpcEndpointRef。无论是Driver还是Executor,每个BlockManager都拥有自己的BlockManagerSlaveEndpoint,且BlockManager的slaveEndpoint属性保存着各自BlockManagerSlaveEndpoint的RpcEndpointRef。Block-ManagerMaster负责发送消息,BlockManagerMasterEndpoint负责消息的接收与处理,Block-ManagerSlaveEndpoint则接收BlockManagerMasterEndpoint下发的命令。

BlockManagerMaster的职责

与存储体系相关的消息

  • RemoveExecutor(移除Executor)
  • RegisterBlockManager(注册BlockManager)
  • UpdateBlockInfo(更新Block信息)
  • GetLocations(获取Block的位置)
  • GetLocationsMultipleBlockIds(获取多个Block的位置)
  • GetPeers(获取其他BlockManager的BlockManagerId)
  • GetExecutorEndpointRef(获取Executor的EndpointRef引用)
  • RemoveBlock(移除Block)
  • RemoveRdd(移除Rdd Block)
  • RemoveShuffle(移除Shuffle Block)。
  • RemoveBroadcast(移除Broadcast Block)。
  • GetMemoryStatus(获取指定的BlockManager的内存状态)。
  • GetStorageStatus(获取存储状态)。
  • GetBlockStatus(获取Block的状态)。
  • GetMatchingBlockIds(获取匹配过滤条件的Block)。
  • HasCachedBlocks(指定的Executor上是否有缓存的Block)。
  • StopBlockManagerMaster(停止BlockManagerMaster)。

RegisterBlockManager

 def registerBlockManager(
      blockManagerId: BlockManagerId,
      maxOnHeapMemSize: Long,
      maxOffHeapMemSize: Long,
      slaveEndpoint: RpcEndpointRef): BlockManagerId = {
    logInfo(s"Registering BlockManager $blockManagerId")
    // 发送RegisterBlockManager到driverEndpoint
    val updatedId = driverEndpoint.askSync[BlockManagerId](
      RegisterBlockManager(blockManagerId, maxOnHeapMemSize, maxOffHeapMemSize, slaveEndpoint))
    logInfo(s"Registered BlockManager $updatedId")
    updatedId
  }

BlockManagerMasterEndpoint

相关属性

  • rpcEnv
  • isLocal
  • SparkConf
  • ListenerBus:时间总线
  • blockmanagerInfo:存储BlockId和BlockInfo的内存映射
  • blockMangerIdByExecutor:blockManagerId和Executor id的映射关系
  • blockLocations:BlockId和BlockManagerId集合的映射关系,block存储在那些blockManager管理
  • askTrheadPool:"block-manager-ask-thread-pool"
  • topologyMapper:对集群所有节点的拓扑结构的映射。

BlockManagerSlaveEndpoint

  • BlockManagerSlaveEndpoint用于接收BlockManagerMasterEndpoint的命令并执行相应的操作。BlockManagerSlaveEndpoint也重写了RpcEndpoint的receiveAndReply方法。

BlockManagerMasterEndpoint的removeRDD方法

  • 这里在对内存中的block进行移除后,会想每个slave发送removeRDD消息
private def removeRdd(rddId: Int): Future[Seq[Int]] = {
    // First remove the metadata for the given RDD, and then asynchronously remove the blocks
    // from the slaves.

    // Find all blocks for the given RDD, remove the block from both blockLocations and
    // the blockManagerInfo that is tracking the blocks.
    val blocks = blockLocations.asScala.keys.flatMap(_.asRDDId).filter(_.rddId == rddId)
    blocks.foreach { blockId =>
      val bms: mutable.HashSet[BlockManagerId] = blockLocations.get(blockId)
      bms.foreach(bm => blockManagerInfo.get(bm).foreach(_.removeBlock(blockId)))
      blockLocations.remove(blockId)
    }

    // Ask the slaves to remove the RDD, and put the result in a sequence of Futures.
    // The dispatcher is used as an implicit argument into the Future sequence construction.
    val removeMsg = RemoveRdd(rddId)

    // 遍历locations,向每个节点的BlockManagerSlaveEndpoint发送RemoveBlock消息。
    val futures = blockManagerInfo.values.map { bm =>
      bm.slaveEndpoint.ask[Int](removeMsg).recover {
        case e: IOException =>
          logWarning(s"Error trying to remove RDD $rddId from block manager ${bm.blockManagerId}",
            e)
          0 // zero blocks were removed
      }
    }.toSeq

    Future.sequence(futures)
  }

// slave
case RemoveRdd(rddId) =>
      doAsync[Int]("removing RDD " + rddId, context) {
        // 移除rdd
        blockManager.removeRdd(rddId)
      }

DiskBlockObjectWriter

  • BlockManager的getDiskWriter方法用于创建DiskBlockObjectWriter。Disk-BlockObjectWriter将在Shuffle阶段将map任务的输出写入磁盘,这样reduce任务就能够从磁盘中获取map任务的中间输出了。
  • DiskBlockObjectWriter用于将JVM中的对象直接写入磁盘文件中。DiskBlockObject-Writer允许将数据追加到现有Block。为了提高效率,DiskBlockObjectWriter保留了跨多个提交的底层文件通道。

相关属性

  • file:要写入的文件。
  • serializerManager:即SerializerManager。
  • serializerInstance:Serializer的实例。
  • bufferSize:缓冲大小。
  • syncWrites:是否同步写。
  • writeMetrics:类型为ShuffleWriteMetrics,用于对Shuffle中间结果写入到磁盘的度量与统计。
  • blockId:即块的唯一身份标识BlockId。DiskBlockObjectWriter的其他属性如下。
  • channel:即FileChannel。
  • mcs:即ManualCloseOutputStream。
  • bs:即OutputStream。
  • fos:即FileOutputStream。
  • objOut:即SerializationStream。
  • ts:即TimeTrackingOutputStream。
  • initialized:是否已经初始化。
  • streamOpen:是否已经打开流。
  • hasBeenClosed:是否已经关闭。
  • committedPosition:提交的文件位置。
  • reportedPosition:报告给度量系统的文件位置。
  • numRecordsWritten:已写的记录数。