-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathexample.py
51 lines (46 loc) · 1.86 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import feature_extract as fe
def run_alexnet():
alexnet = fe.CaffeFeatureExtractor(
model_path="alexnet_deploy.prototxt",
pretrained_path="alexnet.caffemodel",
blob="fc6",
crop_size=227,
meanfile_path="imagenet_mean.npy"
)
fe.create_dataset(net=alexnet, datalist="train.txt", dbprefix="alexnet_train")
fe.create_dataset(net=alexnet, datalist="test.txt", dbprefix="alexnet_test")
def run_vgg16_fc7():
vgg16 = fe.CaffeFeatureExtractor(
model_path="vgg16_deploy.prototxt",
pretrained_path="vgg16.caffemodel",
blob="fc7",
crop_size=224,
mean_values=[103.939, 116.779, 123.68]
)
fe.create_dataset(net=vgg16, datalist="train.txt", dbprefix="vgg16_fc7_train")
fe.create_dataset(net=vgg16, datalist="test.txt", dbprefix="vgg16_fc_7test")
def run_vgg16_fc6():
vgg16 = fe.CaffeFeatureExtractor(
model_path="vgg16_deploy.prototxt",
pretrained_path="vgg16.caffemodel",
blob="fc6",
crop_size=224,
mean_values=[103.939, 116.779, 123.68]
)
fe.create_dataset(net=vgg16, datalist="train.txt", dbprefix="vgg16_fc6_train")
fe.create_dataset(net=vgg16, datalist="test.txt", dbprefix="vgg16_fc6_test")
def run_googlenet():
googlenet = fe.CaffeFeatureExtractor(
model_path="googlenet_deploy.prototxt",
pretrained_path="googlenet.caffemodel",
blob="pool5/7x7_s1",
crop_size=224,
mean_values=[104.0, 117.0, 123.0]
)
fe.create_dataset(net=googlenet, datalist="train.txt", dbprefix="googlenet_train")
fe.create_dataset(net=googlenet, datalist="test.txt", dbprefix="googlenet_test")
if __name__ == "__main__":
run_alexnet()
run_vgg16_fc7()
run_vgg16_fc6()
run_googlenet()