-
Notifications
You must be signed in to change notification settings - Fork 416
/
Copy pathfuture_enhancements.py
831 lines (681 loc) · 38 KB
/
future_enhancements.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
import streamlit as st
def future_enhancements_tab():
# Display the future enhancements and integrations interface
st.write("## Future Enhancements")
st.write("Explore what's coming next for Archon - from specialized multi-agent workflows to autonomous framework learning.")
# Future Iterations section
st.write("### Future Iterations")
# V5: Multi-Agent Coding Workflow
with st.expander("V5: Multi-Agent Coding Workflow"):
st.write("Specialized agents for different parts of the agent creation process")
# Create a visual representation of multi-agent workflow
st.write("#### Multi-Agent Coding Architecture")
# Describe the parallel architecture
st.markdown("""
The V5 architecture introduces specialized parallel agents that work simultaneously on different aspects of agent creation:
1. **Reasoner Agent**: Analyzes requirements and plans the overall agent architecture
2. **Parallel Coding Agents**:
- **Prompt Engineering Agent**: Designs optimal prompts for the agent
- **Tool Definition Agent**: Creates tool specifications and interfaces
- **Dependencies Agent**: Identifies required libraries and dependencies
- **Model Selection Agent**: Determines the best model configuration
3. **Final Coding Agent**: Integrates all components into a cohesive agent
4. **Human-in-the-Loop**: Iterative refinement with the final coding agent
""")
# Display parallel agents
st.write("#### Parallel Coding Agents")
col1, col2, col3, col4 = st.columns(4)
with col1:
st.info("**Prompt Engineering Agent**\n\nDesigns optimal prompts for different agent scenarios")
with col2:
st.success("**Tool Definition Agent**\n\nCreates tool specifications and interfaces")
with col3:
st.warning("**Dependencies Agent**\n\nIdentifies required libraries and dependencies")
with col4:
st.error("**Model Selection Agent**\n\nDetermines the best model configuration")
# Updated flow chart visualization with better colors for ovals
st.graphviz_chart('''
digraph {
rankdir=LR;
node [shape=box, style=filled, color=lightblue];
User [label="User Request", shape=ellipse, style=filled, color=purple, fontcolor=black];
Reasoner [label="Reasoner\nAgent"];
subgraph cluster_parallel {
label = "Parallel Coding Agents";
color = lightgrey;
style = filled;
Prompt [label="Prompt\nEngineering\nAgent", color=lightskyblue];
Tools [label="Tool\nDefinition\nAgent", color=green];
Dependencies [label="Dependencies\nAgent", color=yellow];
Model [label="Model\nSelection\nAgent", color=pink];
}
Final [label="Final\nCoding\nAgent"];
Human [label="Human-in-the-Loop\nIteration", shape=ellipse, style=filled, color=orange, fontcolor=black];
User -> Reasoner;
Reasoner -> Prompt;
Reasoner -> Tools;
Reasoner -> Dependencies;
Reasoner -> Model;
Prompt -> Final;
Tools -> Final;
Dependencies -> Final;
Model -> Final;
Final -> Human;
Human -> Final [label="Feedback Loop", color=red, constraint=false];
}
''')
st.write("#### Benefits of Parallel Agent Architecture")
st.markdown("""
- **Specialization**: Each agent focuses on its area of expertise
- **Efficiency**: Parallel processing reduces overall development time
- **Quality**: Specialized agents produce higher quality components
- **Flexibility**: Easy to add new specialized agents as needed
- **Scalability**: Architecture can handle complex agent requirements
""")
# V6: Tool Library and Example Integration
with st.expander("V6: Tool Library and Example Integration"):
st.write("Pre-built external tool and agent examples incorporation")
st.write("""
With pre-built tools, the agent can pull full functions from the tool library so it doesn't have to
create them from scratch. On top of that, pre-built agents will give Archon a starting point
so it doesn't have to build the agent structure from scratch either.
""")
st.write("#### Example Integration Configuration")
# Add tabs for different aspects of V6
tool_tab, example_tab = st.tabs(["Tool Library", "Example Agents"])
with tool_tab:
st.write("##### Example Tool Library Config (could be a RAG implementation too, still deciding)")
sample_config = """
{
"tool_library": {
"web_tools": {
"web_search": {
"type": "search_engine",
"api_key_env": "SEARCH_API_KEY",
"description": "Search the web for information"
},
"web_browser": {
"type": "browser",
"description": "Navigate web pages and extract content"
}
},
"data_tools": {
"database_query": {
"type": "sql_executor",
"description": "Execute SQL queries against databases"
},
"data_analysis": {
"type": "pandas_processor",
"description": "Analyze data using pandas"
}
},
"ai_service_tools": {
"image_generation": {
"type": "text_to_image",
"api_key_env": "IMAGE_GEN_API_KEY",
"description": "Generate images from text descriptions"
},
"text_to_speech": {
"type": "tts_converter",
"api_key_env": "TTS_API_KEY",
"description": "Convert text to spoken audio"
}
}
}
}
"""
st.code(sample_config, language="json")
st.write("##### Pydantic AI Tool Definition Example")
pydantic_tool_example = """
from pydantic_ai import Agent, RunContext, Tool
from typing import Union, List, Dict, Any
import requests
@agent.tool
async def weather_tool(ctx: RunContext[Dict[str, Any]], location: str) -> str:
\"\"\"Get current weather information for a location.
Args:
location: The city and state/country (e.g., 'San Francisco, CA')
Returns:
A string with current weather conditions and temperature
\"\"\"
api_key = ctx.deps.get("WEATHER_API_KEY")
if not api_key:
return "Error: Weather API key not configured"
try:
url = f"https://api.weatherapi.com/v1/current.json?key={api_key}&q={location}"
response = requests.get(url)
data = response.json()
if "error" in data:
return f"Error: {data['error']['message']}"
current = data["current"]
location_name = f"{data['location']['name']}, {data['location']['country']}"
condition = current["condition"]["text"]
temp_c = current["temp_c"]
temp_f = current["temp_f"]
humidity = current["humidity"]
return f"Weather in {location_name}: {condition}, {temp_c}°C ({temp_f}°F), {humidity}% humidity"
except Exception as e:
return f"Error retrieving weather data: {str(e)}"
"""
st.code(pydantic_tool_example, language="python")
st.write("##### Tool Usage in Agent")
tool_usage_example = """
async def use_weather_tool(location: str) -> str:
\"\"\"Search for weather information\"\"\"
tool = agent.get_tool("get_weather")
result = await tool.execute({"location": location})
return result.content
"""
st.code(tool_usage_example, language="python")
with example_tab:
st.write("##### Example Agents")
st.markdown("""
V6 will include pre-built example agents that serve as templates and learning resources. These examples will be baked directly into agent prompts to improve results and consistency.
**Benefits of Example Agents:**
- Provide concrete implementation patterns for common agent types
- Demonstrate best practices for tool usage and error handling
- Serve as starting points that can be customized for specific needs
- Improve consistency in agent behavior and output format
- Reduce the learning curve for new users
""")
st.write("##### Example Agent Types")
example_agents = {
"Research Assistant": {
"description": "Performs comprehensive research on topics using web search and content analysis",
"tools": ["web_search", "web_browser", "summarization"],
"example_prompt": "Research the latest advancements in quantum computing and provide a summary"
},
"Data Analyst": {
"description": "Analyzes datasets, generates visualizations, and provides insights",
"tools": ["database_query", "data_analysis", "chart_generation"],
"example_prompt": "Analyze this sales dataset and identify key trends over the past quarter"
},
"Content Creator": {
"description": "Generates various types of content including text, images, and code",
"tools": ["text_generation", "image_generation", "code_generation"],
"example_prompt": "Create a blog post about sustainable living with accompanying images"
},
"Conversational Assistant": {
"description": "Engages in helpful, informative conversations with natural dialogue",
"tools": ["knowledge_base", "memory_management", "personalization"],
"example_prompt": "I'd like to learn more about machine learning. Where should I start?"
}
}
# Create a table of example agents
example_data = {
"Agent Type": list(example_agents.keys()),
"Description": [example_agents[a]["description"] for a in example_agents],
"Core Tools": [", ".join(example_agents[a]["tools"]) for a in example_agents]
}
st.dataframe(example_data, use_container_width=True)
st.write("##### Example Agent Implementation")
st.code("""
# Example Weather Agent based on Pydantic AI documentation
from pydantic_ai import Agent, RunContext
from typing import Dict, Any
from dataclasses import dataclass
from httpx import AsyncClient
@dataclass
class WeatherDeps:
client: AsyncClient
weather_api_key: str | None
geo_api_key: str | None
# Create the agent with appropriate system prompt
weather_agent = Agent(
'openai:gpt-4o',
system_prompt=(
'Be concise, reply with one sentence. '
'Use the `get_lat_lng` tool to get the latitude and longitude of locations, '
'then use the `get_weather` tool to get the weather.'
),
deps_type=WeatherDeps,
)
@weather_agent.tool
async def get_lat_lng(ctx: RunContext[WeatherDeps], location_description: str) -> Dict[str, float]:
\"\"\"Get the latitude and longitude of a location.
Args:
location_description: A description of a location (e.g., 'London, UK')
Returns:
Dictionary with lat and lng keys
\"\"\"
if ctx.deps.geo_api_key is None:
# Return dummy data if no API key
return {'lat': 51.1, 'lng': -0.1}
# Call geocoding API
params = {'q': location_description, 'api_key': ctx.deps.geo_api_key}
r = await ctx.deps.client.get('https://geocode.maps.co/search', params=params)
r.raise_for_status()
data = r.json()
if data:
return {'lat': float(data[0]['lat']), 'lng': float(data[0]['lon'])}
else:
return {'error': 'Location not found'}
@weather_agent.tool
async def get_weather(ctx: RunContext[WeatherDeps], lat: float, lng: float) -> Dict[str, Any]:
\"\"\"Get the weather at a location.
Args:
lat: Latitude of the location
lng: Longitude of the location
Returns:
Dictionary with temperature and description
\"\"\"
if ctx.deps.weather_api_key is None:
# Return dummy data if no API key
return {'temperature': '21°C', 'description': 'Sunny'}
# Call weather API
params = {
'apikey': ctx.deps.weather_api_key,
'location': f'{lat},{lng}',
'units': 'metric',
}
r = await ctx.deps.client.get(
'https://api.tomorrow.io/v4/weather/realtime',
params=params
)
r.raise_for_status()
data = r.json()
values = data['data']['values']
weather_codes = {
1000: 'Clear, Sunny',
1100: 'Mostly Clear',
1101: 'Partly Cloudy',
4001: 'Rain',
5000: 'Snow',
8000: 'Thunderstorm',
}
return {
'temperature': f'{values["temperatureApparent"]:0.0f}°C',
'description': weather_codes.get(values['weatherCode'], 'Unknown'),
}
# Example usage
async def get_weather_report(location: str) -> str:
\"\"\"Get weather report for a location.\"\"\"
async with AsyncClient() as client:
deps = WeatherDeps(
client=client,
weather_api_key="YOUR_API_KEY", # Replace with actual key
geo_api_key="YOUR_API_KEY", # Replace with actual key
)
result = await weather_agent.run(
f"What is the weather like in {location}?",
deps=deps
)
return result.data
""", language="python")
st.info("""
**In-Context Learning with Examples**
These example agents will be used in the system prompt for Archon, providing concrete examples that help the LLM understand the expected structure and quality of agent code. This approach leverages in-context learning to significantly improve code generation quality and consistency.
""")
# V7: LangGraph Documentation
with st.expander("V7: LangGraph Documentation"):
st.write("Integrating LangGraph for complex agent workflows")
st.markdown("""
### Pydantic AI vs LangGraph with Pydantic AI
V7 will integrate LangGraph to enable complex agent workflows while maintaining compatibility with Pydantic AI agents.
This allows for creating sophisticated multi-agent systems with well-defined state management and workflow control.
""")
col1, col2 = st.columns(2)
with col1:
st.markdown("#### Pydantic AI Agent")
st.markdown("Simple, standalone agent with tools")
pydantic_agent_code = """
# Simple Pydantic AI Weather Agent
from pydantic_ai import Agent, RunContext
from typing import Dict, Any
from dataclasses import dataclass
from httpx import AsyncClient
@dataclass
class WeatherDeps:
client: AsyncClient
weather_api_key: str | None
# Create the agent
weather_agent = Agent(
'openai:gpt-4o',
system_prompt="You provide weather information.",
deps_type=WeatherDeps,
)
@weather_agent.tool
async def get_weather(
ctx: RunContext[WeatherDeps],
location: str
) -> Dict[str, Any]:
\"\"\"Get weather for a location.\"\"\"
# Implementation details...
return {"temperature": "21°C", "description": "Sunny"}
# Usage
async def main():
async with AsyncClient() as client:
deps = WeatherDeps(
client=client,
weather_api_key="API_KEY"
)
result = await weather_agent.run(
"What's the weather in London?",
deps=deps
)
print(result.data)
"""
st.code(pydantic_agent_code, language="python")
with col2:
st.markdown("#### LangGraph with Pydantic AI Agent")
st.markdown("Complex workflow using Pydantic AI agents in a graph")
langgraph_code = """
# LangGraph with Pydantic AI Agents
from pydantic_ai import Agent, RunContext
from typing import TypedDict, Literal
from dataclasses import dataclass
from httpx import AsyncClient
from langgraph.graph import StateGraph, START, END
# Define state for LangGraph
class GraphState(TypedDict):
query: str
weather_result: str
verified: bool
response: str
# Create a verifier agent
verifier_agent = Agent(
'openai:gpt-4o',
system_prompt=(
"You verify weather information for accuracy and completeness. "
"Check if the weather report includes temperature, conditions, "
"and is properly formatted."
)
)
# Define nodes for the graph
async def get_weather_info(state: GraphState) -> GraphState:
\"\"\"Use the weather agent to get weather information.\"\"\"
# Simply use the weather agent directly
async with AsyncClient() as client:
deps = WeatherDeps(
client=client,
weather_api_key="API_KEY"
)
result = await weather_agent.run(
state["query"],
deps=deps
)
return {"weather_result": result.data}
async def verify_information(state: GraphState) -> GraphState:
\"\"\"Use the verifier agent to check the weather information.\"\"\"
result = await verifier_agent.run(
f"Verify this weather information: {state['weather_result']}"
)
# Simple verification logic
verified = "accurate" in result.data.lower()
return {"verified": verified}
async def route(state: GraphState) -> Literal["regenerate", "finalize"]:
"\"\"Decide whether to regenerate or finalize based on verification.\"\"\"
if state["verified"]:
return "finalize"
else:
return "regenerate"
async def regenerate_response(state: GraphState) -> GraphState:
\"\"\"Regenerate a better response if verification failed.\"\"\"
result = await verifier_agent.run(
result = await weather_agent.run(
f"Please provide more detailed weather information for: {state['query']}"
)
return {"weather_result": result.data, "verified": True}
async def finalize_response(state: GraphState) -> GraphState:
\"\"\"Format the final response.\"\"\"
return {"response": f"Verified Weather Report: {state['weather_result']}"}
# Build the graph
workflow = StateGraph(GraphState)
# Add nodes
workflow.add_node("get_weather", get_weather_info)
workflow.add_node("verify", verify_information)
workflow.add_node("regenerate", regenerate_response)
workflow.add_node("finalize", finalize_response)
# Add edges
workflow.add_edge(START, "get_weather")
workflow.add_edge("get_weather", "verify")
# Add conditional edges based on verification
workflow.add_conditional_edges(
"verify",
route,
{
"regenerate": "regenerate",
"finalize": "finalize"
}
)
workflow.add_edge("regenerate", "finalize")
workflow.add_edge("finalize", END)
# Compile the graph
app = workflow.compile()
# Usage
async def main():
result = await app.ainvoke({
"query": "What's the weather in London?",
"verified": False
})
print(result["response"])
"""
st.code(langgraph_code, language="python")
st.markdown("""
### Key Benefits of Integration
1. **Workflow Management**: LangGraph provides a structured way to define complex agent workflows with clear state transitions.
2. **Reusability**: Pydantic AI agents can be reused within LangGraph nodes, maintaining their tool capabilities.
3. **Visualization**: LangGraph offers built-in visualization of agent workflows, making it easier to understand and debug complex systems.
4. **State Management**: The typed state in LangGraph ensures type safety and clear data flow between nodes.
5. **Parallel Execution**: LangGraph supports parallel execution of nodes, enabling more efficient processing.
6. **Human-in-the-Loop**: Both frameworks support human intervention points, which can be combined for powerful interactive systems.
""")
st.image("https://blog.langchain.dev/content/images/2024/01/simple_multi_agent_diagram--1-.png",
caption="Example LangGraph Multi-Agent Workflow", width=600)
# V8: Self-Feedback Loop
with st.expander("V8: Self-Feedback Loop"):
st.write("Automated validation and error correction")
# Create a visual feedback loop
st.graphviz_chart('''
digraph {
rankdir=TB;
node [shape=box, style=filled, color=lightblue];
Agent [label="Agent Generation"];
Test [label="Automated Testing"];
Validate [label="Validation"];
Error [label="Error Detection"];
Fix [label="Self-Correction"];
Agent -> Test;
Test -> Validate;
Validate -> Error [label="Issues Found"];
Error -> Fix;
Fix -> Agent [label="Regenerate"];
Validate -> Agent [label="Success", color=green];
}
''')
st.write("#### Validation Process")
st.info("""
1. Generate agent code
2. Run automated tests
3. Analyze test results
4. Identify errors or improvement areas
5. Apply self-correction algorithms
6. Regenerate improved code
7. Repeat until validation passes
""")
# V9: Self Agent Execution
with st.expander("V9: Self Agent Execution"):
st.write("Testing and iterating on agents in an isolated environment")
st.write("#### Agent Execution Process")
execution_process = [
{"phase": "Sandbox Creation", "description": "Set up isolated environment using Local AI package"},
{"phase": "Agent Deployment", "description": "Load the generated agent into the testing environment"},
{"phase": "Test Execution", "description": "Run the agent against predefined scenarios and user queries"},
{"phase": "Performance Monitoring", "description": "Track response quality, latency, and resource usage"},
{"phase": "Error Detection", "description": "Identify runtime errors and logical inconsistencies"},
{"phase": "Iterative Improvement", "description": "Refine agent based on execution results"}
]
for i, phase in enumerate(execution_process):
st.write(f"**{i+1}. {phase['phase']}:** {phase['description']}")
st.write("#### Local AI Package Integration")
st.markdown("""
The [Local AI package](https://github.com/coleam00/local-ai-packaged) provides a containerized environment for:
- Running LLMs locally for agent testing
- Simulating API calls and external dependencies
- Monitoring agent behavior in a controlled setting
- Collecting performance metrics for optimization
""")
st.info("This enables Archon to test and refine agents in a controlled environment before deployment, significantly improving reliability and performance through empirical iteration.")
# V10: Multi-Framework Support
with st.expander("V10: Multi-Framework Support"):
st.write("Framework-agnostic agent generation")
frameworks = {
"Pydantic AI": {"status": "Supported", "description": "Native support for function-based agents"},
"LangGraph": {"status": "Coming in V7", "description": "Declarative multi-agent orchestration"},
"LangChain": {"status": "Planned", "description": "Popular agent framework with extensive tools"},
"Agno (Phidata)": {"status": "Planned", "description": "Multi-agent workflow framework"},
"CrewAI": {"status": "Planned", "description": "Role-based collaborative agents"},
"LlamaIndex": {"status": "Planned", "description": "RAG-focused agent framework"}
}
# Create a frameworks comparison table
df_data = {
"Framework": list(frameworks.keys()),
"Status": [frameworks[f]["status"] for f in frameworks],
"Description": [frameworks[f]["description"] for f in frameworks]
}
st.dataframe(df_data, use_container_width=True)
# V11: Autonomous Framework Learning
with st.expander("V11: Autonomous Framework Learning"):
st.write("Self-learning from mistakes and continuous improvement")
st.write("#### Self-Improvement Process")
improvement_process = [
{"phase": "Error Detection", "description": "Identifies patterns in failed agent generations and runtime errors"},
{"phase": "Root Cause Analysis", "description": "Analyzes error patterns to determine underlying issues in prompts or examples"},
{"phase": "Prompt Refinement", "description": "Automatically updates system prompts to address identified weaknesses"},
{"phase": "Example Augmentation", "description": "Adds new examples to the prompt library based on successful generations"},
{"phase": "Tool Enhancement", "description": "Creates or modifies tools to handle edge cases and common failure modes"},
{"phase": "Validation", "description": "Tests improvements against historical failure cases to ensure progress"}
]
for i, phase in enumerate(improvement_process):
st.write(f"**{i+1}. {phase['phase']}:** {phase['description']}")
st.info("This enables Archon to stay updated with the latest AI frameworks without manual intervention.")
# V12: Advanced RAG Techniques
with st.expander("V12: Advanced RAG Techniques"):
st.write("Enhanced retrieval and incorporation of framework documentation")
st.write("#### Advanced RAG Components")
col1, col2 = st.columns(2)
with col1:
st.markdown("#### Document Processing")
st.markdown("""
- **Hierarchical Chunking**: Multi-level chunking strategy that preserves document structure
- **Semantic Headers**: Extraction of meaningful section headers for better context
- **Code-Text Separation**: Specialized embedding models for code vs. natural language
- **Metadata Enrichment**: Automatic tagging with framework version, function types, etc.
""")
st.markdown("#### Query Processing")
st.markdown("""
- **Query Decomposition**: Breaking complex queries into sub-queries
- **Framework Detection**: Identifying which framework the query relates to
- **Intent Classification**: Determining if query is about usage, concepts, or troubleshooting
- **Query Expansion**: Adding relevant framework-specific terminology
""")
with col2:
st.markdown("#### Retrieval Enhancements")
st.markdown("""
- **Hybrid Search**: Combining dense and sparse retrievers for optimal results
- **Re-ranking**: Post-retrieval scoring based on relevance to the specific task
- **Cross-Framework Retrieval**: Finding analogous patterns across different frameworks
- **Code Example Prioritization**: Boosting practical examples in search results
""")
st.markdown("#### Knowledge Integration")
st.markdown("""
- **Context Stitching**: Intelligently combining information from multiple chunks
- **Framework Translation**: Converting patterns between frameworks (e.g., LangChain to LangGraph)
- **Version Awareness**: Handling differences between framework versions
- **Adaptive Retrieval**: Learning from successful and unsuccessful retrievals
""")
st.info("This enables Archon to more effectively retrieve and incorporate framework documentation, leading to more accurate and contextually appropriate agent generation.")
# V13: MCP Agent Marketplace
with st.expander("V13: MCP Agent Marketplace"):
st.write("Integrating Archon agents as MCP servers and publishing to marketplaces")
st.write("#### MCP Integration Process")
mcp_integration_process = [
{"phase": "Protocol Implementation", "description": "Implement the Model Context Protocol to enable IDE integration"},
{"phase": "Agent Conversion", "description": "Transform Archon-generated agents into MCP-compatible servers"},
{"phase": "Specialized Agent Creation", "description": "Build purpose-specific agents for code review, refactoring, and testing"},
{"phase": "Marketplace Publishing", "description": "Package and publish agents to MCP marketplaces for distribution"},
{"phase": "IDE Integration", "description": "Enable seamless operation within Windsurf, Cursor, and other MCP-enabled IDEs"}
]
for i, phase in enumerate(mcp_integration_process):
st.write(f"**{i+1}. {phase['phase']}:** {phase['description']}")
st.info("This enables Archon to create specialized agents that operate directly within IDEs through the MCP protocol, while also making them available through marketplace distribution channels.")
# Future Integrations section
st.write("### Future Integrations")
# LangSmith
with st.expander("LangSmith"):
st.write("Integration with LangChain's tracing and monitoring platform")
st.image("https://docs.smith.langchain.com/assets/images/trace-9510284b5b15ba55fc1cca6af2404657.png", width=600)
st.write("#### LangSmith Benefits")
st.markdown("""
- **Tracing**: Monitor agent execution steps and decisions
- **Debugging**: Identify issues in complex agent workflows
- **Analytics**: Track performance and cost metrics
- **Evaluation**: Assess agent quality with automated testing
- **Feedback Collection**: Gather human feedback to improve agents
""")
# MCP Marketplace
with st.expander("MCP Marketplace"):
st.write("Integration with AI IDE marketplaces")
st.write("#### MCP Marketplace Integration")
st.markdown("""
- Publish Archon itself as a premium agent in MCP marketplaces
- Create specialized Archon variants for different development needs
- Enable one-click installation directly from within IDEs
- Integrate seamlessly with existing development workflows
""")
st.warning("The Model Context Protocol (MCP) is an emerging standard for AI assistant integration with IDEs like Windsurf, Cursor, and Cline.")
# Other Frameworks
with st.expander("Other Frameworks besides Pydantic AI"):
st.write("Support for additional agent frameworks")
st.write("#### Framework Adapter Architecture")
st.graphviz_chart('''
digraph {
rankdir=TB;
node [shape=box, style=filled, color=lightblue];
Archon [label="Archon Core"];
Adapter [label="Framework Adapter Layer"];
Pydantic [label="Pydantic AI", color=lightskyblue];
LangGraph [label="LangGraph", color=lightskyblue];
LangChain [label="LangChain", color=lightskyblue];
Agno [label="Agno", color=lightskyblue];
CrewAI [label="CrewAI", color=lightskyblue];
LlamaIndex [label="LlamaIndex", color=lightskyblue];
Archon -> Adapter;
Adapter -> Pydantic;
Adapter -> LangGraph;
Adapter -> LangChain;
Adapter -> Agno;
Adapter -> CrewAI;
Adapter -> LlamaIndex;
}
''')
# Vector Databases
with st.expander("Other Vector Databases besides Supabase"):
st.write("Support for additional vector databases")
vector_dbs = {
"Supabase": {"status": "Supported", "features": ["pgvector integration", "SQL API", "Real-time subscriptions"]},
"Pinecone": {"status": "Planned", "features": ["High scalability", "Low latency", "Serverless"]},
"Qdrant": {"status": "Planned", "features": ["Filtering", "Self-hosted option", "REST API"]},
"Milvus": {"status": "Planned", "features": ["Horizontal scaling", "Cloud-native", "Hybrid search"]},
"Chroma": {"status": "Planned", "features": ["Local-first", "Lightweight", "Simple API"]},
"Weaviate": {"status": "Planned", "features": ["GraphQL", "Multi-modal", "RESTful API"]}
}
# Create vector DB comparison table
df_data = {
"Vector Database": list(vector_dbs.keys()),
"Status": [vector_dbs[db]["status"] for db in vector_dbs],
"Key Features": [", ".join(vector_dbs[db]["features"]) for db in vector_dbs]
}
st.dataframe(df_data, use_container_width=True)
# Local AI Package
with st.expander("Local AI Package Integration"):
st.write("Integration with [Local AI Package](https://github.com/coleam00/local-ai-packaged)")
st.markdown("""
The Local AI Package enables running models entirely locally, providing:
- **Complete Privacy**: No data leaves your machine
- **Cost Savings**: Eliminate API usage fees
- **Offline Operation**: Work without internet connectivity
- **Custom Fine-tuning**: Adapt models to specific domains
- **Lower Latency**: Reduce response times for better UX
""")
st.info("This integration will allow Archon to operate fully offline with local models for both agent creation and execution.")