-
Notifications
You must be signed in to change notification settings - Fork 3
/
operation.hpp
451 lines (421 loc) · 13.5 KB
/
operation.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/**
* Copyright (C) Codeplay Software Limited.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef INCLUDE_TENSOROPT_OPERATION_HPP
#define INCLUDE_TENSOROPT_OPERATION_HPP
/**
* Available operations.
*
* Binary operations will reshape and broadcast the inputs if needed.
* The rank of the output is the maximum rank of the inputs.
* Example:
* lhs: [4, 1, 2]
* rhs: [5, 4, 3, 1]
* res: [4, 4, 3, 2]
*/
enum OperationCode : int {
/**
* Binary addition operation.
*
* Inputs:
* 0: TENSOR_* tensor - lhs
* 1: TENSOR_* tensor - rhs of the same type as lhs
* 2: INT32 scalar - FuseCode (optional, defaults to
* ANEURALNETWORKS_FUSED_NONE)
*
* Output:
* 0: TENSOR_* tensor - result of the same type as lhs
*/
ANEURALNETWORKS_ADD,
/**
* Compute a forward 2D average pooling.
*
* Inputs:
* 0: TENSOR_FLOAT32 tensor - input in NHWC format
* 1: INT32 scalar - PaddingCode
* 2: INT32 scalar - stride width
* 3: INT32 scalar - stride height
* 4: INT32 scalar - filter width
* 5: INT32 scalar - filter height
* 6: INT32 scalar - FuseCode (optional, defaults to
* ANEURALNETWORKS_FUSED_NONE)
* 7: BOOL scalar - Set to true to use NCHW format (optional, defaults to
* false)
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_AVERAGE_POOL_2D,
/**
* Cast a tensor to a new type.
*
* Input:
* 0: TENSOR_* tensor - tensor to cast
*
* Output:
* 0: TENSOR_* tensor - result of the same shape as the input
*/
ANEURALNETWORKS_CAST,
/**
* Concatenate multiple tensors along a dimension.
*
* Inputs:
* 0 to (n-1): TENSOR_* tensor - n inputs, of the same type and of shape
* [D0, D1, ..., Daxis(i), ..., Dm]
* n: INT32 scalar - concatenation axis, negative values specify dimensions
* from the end
*
* Output:
* 0: TENSOR_* tensor - result of the same type as the inputs and of
* shape [D0, D1, ..., sum(Daxis(i)), ..., Dm]
*/
ANEURALNETWORKS_CONCATENATION,
/**
* Compute a forward 2D convolution.
*
* Inputs:
* 0: TENSOR_FLOAT32 tensor - input in NHWC format
* 1: TENSOR_FLOAT32 tensor - filter in [Co, Fh, Fw, Ci] format
* 2: TENSOR_FLOAT32 tensor - bias 1D tensor of size Co or 0D to ignore bias
* 3: INT32 scalar - PaddingCode
* 4: INT32 scalar - stride width
* 5: INT32 scalar - stride height
* 6: INT32 scalar - FuseCode (optional, defaults to
* ANEURALNETWORKS_FUSED_NONE)
* 7: BOOL scalar - Set to true to specify the input in NCHW format
* (optional, defaults to false)
* 8: BOOL scalar - Set to true to specify the filter in [Fh, Fw, Ci, Co]
* format (optional, defaults to false)
* 9: INT32 scalar - dilation width (optional, defaults to 1)
* 10: INT32 scalar - dilation height (optional, defaults to 1)
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_CONV_2D,
/**
* Binary division operation.
*
* Inputs:
* 0: TENSOR_* tensor - lhs
* 1: TENSOR_* tensor - rhs of the same type as lhs
* 2: INT32 scalar - FuseCode (optional, defaults to
* ANEURALNETWORKS_FUSED_NONE)
*
* Output:
* 0: TENSOR_* tensor - result of the same type as lhs
*/
ANEURALNETWORKS_DIV,
/**
* Compute a 2D depthwise convolution.
*
* Inputs:
* 0: TENSOR_FLOAT32 tensor - input in NHWC format
* 1: TENSOR_FLOAT32 tensor - filter in [Co, Fh, Fw, Ci] format
* 2: TENSOR_FLOAT32 tensor - bias 1D tensor of size Co or 0D to ignore bias
* 3: INT32 scalar - PaddingCode
* 4: INT32 scalar - stride width
* 5: INT32 scalar - stride height
* 6: INT32 scalar - depthwise multiplier (optional, defaults to 1)
* 7: INT32 scalar - FuseCode (optional, defaults to
* ANEURALNETWORKS_FUSED_NONE)
* 8: BOOL scalar - Set to true to specify the input in NCHW format
* (optional, defaults to false)
* 9: BOOL scalar - Set to true to specify the filter in [Fh, Fw, Ci, Co]
* format (optional, defaults to false)
* 10: INT32 scalar - dilation width (optional, defaults to 1)
* 11: INT32 scalar - dilation height (optional, defaults to 1)
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_DEPTHWISE_CONV_2D,
/**
* Unary exp operation
*
* Input:
* 0: TENSOR_FLOAT32 tensor - input
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_EXP,
/**
* Binary maximum operation.
*
* Inputs:
* 0: TENSOR_* tensor - lhs
* 1: TENSOR_* tensor - rhs of the same type as lhs
* 2: INT32 scalar - FuseCode (optional, defaults to
* ANEURALNETWORKS_FUSED_NONE)
*
* Output:
* 0: TENSOR_* tensor - result of the same type as lhs
*/
ANEURALNETWORKS_MAX,
/**
* Compute a forward 2D max pooling.
*
* Inputs:
* 0: TENSOR_FLOAT32 tensor - input in NHWC format
* 1: INT32 scalar - PaddingCode
* 2: INT32 scalar - stride width
* 3: INT32 scalar - stride height
* 4: INT32 scalar - filter width
* 5: INT32 scalar - filter height
* 6: INT32 scalar - FuseCode (optional, defaults to
* ANEURALNETWORKS_FUSED_NONE)
* 7: BOOL scalar - Set to true to use NCHW format (optional, defaults to
* false)
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_MAX_POOL_2D,
/**
* Binary minimum operation.
*
* Inputs:
* 0: TENSOR_* tensor - lhs, must be of rank 2
* 1: TENSOR_* tensor - rhs of the same type as lhs, must be of rank 2
* 2: BOOL scalar - Whether to transpose lhs
* 3: BOOL scalar - Whether to transpose rhs
*
* Output:
* 0: TENSOR_* tensor - result of the same type as lhs
*/
ANEURALNETWORKS_MATMUL,
/**
* Binary minimum operation.
*
* Inputs:
* 0: TENSOR_* tensor - lhs
* 1: TENSOR_* tensor - rhs of the same type as lhs
* 2: INT32 scalar - FuseCode (optional, defaults to
* ANEURALNETWORKS_FUSED_NONE)
*
* Output:
* 0: TENSOR_* tensor - result of the same type as lhs
*/
ANEURALNETWORKS_MIN,
/**
* Binary multiplication operation.
*
* Inputs:
* 0: TENSOR_* tensor - lhs
* 1: TENSOR_* tensor - rhs of the same type as lhs
* 2: INT32 scalar - FuseCode (optional, defaults to
* ANEURALNETWORKS_FUSED_NONE)
*
* Output:
* 0: TENSOR_* tensor - result of the same type as lhs
*/
ANEURALNETWORKS_MUL,
/**
* Unary relu operation, compute max(0, input)
*
* Input:
* 0: TENSOR_FLOAT32 tensor - input
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_RELU,
/**
* Unary relu1 operation, compute min(1, max(-1, input))
*
* Input:
* 0: TENSOR_FLOAT32 tensor - input
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_RELU1,
/**
* Unary relu6 operation, compute min(6, max(0, input))
*
* Input:
* 0: TENSOR_FLOAT32 tensor - input
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_RELU6,
/**
* Reshape a tensor.
*
* Inputs:
* 0: TENSOR_* tensor - input
* 1: INT32 vector - the numer of element in this shape must be the
* same as in the input's shape. At most one component
* can be -1, this component will be computed so that
* the number of elements stays the same.
*
* Output:
* 0: TENSOR_* tensor - result of the same type as the input
*/
ANEURALNETWORKS_RESHAPE,
/**
* Unary rsqrt operation
*
* Input:
* 0: TENSOR_FLOAT32 tensor - input
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_RSQRT,
/**
* Extract slices from a tensor.
*
* Inputs:
* 0: TENSOR_* tensor - input
* 1: INT32 vector - begin of the slices, must be of size rank(input).
* 2: INT32 vector - size of the slices, must be of size rank(input).
* Use a negative value to select the whole size of a
* specific dimension.
*
* Output:
* 0: TENSOR_* tensor - result of the same type as the input
*/
ANEURALNETWORKS_SLICE,
/**
* Compute the softmax function of a tensor.
* Equivalent of
* output[i] = exp((input[i] - max(input, axis)) * beta) /
* sum_{j}(exp((input[j] - max(input, axis)) * beta), axis)
*
* Inputs:
* 0: TENSOR_FLOAT32 tensor - input
* 1: FLOAT32 scalar - beta factor (optional, defaults to 1)
* 2: INT32 scalar - specify the axis to reduce, negative values specify
* dimensions from the end (optional, defaults to -1)
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_SOFTMAX,
/**
* Unary sqrt operation
*
* Input:
* 0: TENSOR_FLOAT32 tensor - input
*
* Output:
* 0: TENSOR_FLOAT32 tensor - result of the same type as the input
*/
ANEURALNETWORKS_SQRT,
/**
* Squeeze a tensor to remove all dimensions of size 1.
*
* Inputs:
* 0: TENSOR_* tensor - input
* 1: INT32 vector - set of dimensions allowed to be squeezed,
* negative values specify dimensions from the end
* (optional, defaults to all)
*
* Output:
* 0: TENSOR_* tensor - result of the same type as the input
*/
ANEURALNETWORKS_SQUEEZE,
/**
* Extract strided slices from a tensor.
* The slice at the ith dimension is of size
* ceil((end[i] - begin[i]) / stride[i]).
* The stride starts at begin[i], is incremented by stride[i] and stops at
* end[i] excluded. A negative stride is possible to reverse the stride.
* Assuming positive begin and end, begin must be smaller than end for a
* positive stride and bigger for a negative stride.
* The masks can change this behaviour as explained.
*
* Inputs:
* 0: TENSOR_* tensor - input
* 1: INT32 vector - begin of the slices, must be of size smaller or equal
* to rank(input)
* 2: INT32 vector - end of the slices, must be of the same size than begin
* input
* 3: INT32 vector - strides of the slices, must be non-zero values of the
* same size than begin input
* 4: INT32 scalar - begin_mask, if the ith bit is set behave as if
* begin[i]=0 (optional, defaults to 0)
* 5: INT32 scalar - end_mask, if the ith bit is set behave as if end[i]=-1
* (optional, defaults to 0)
* 6: INT32 scalar - shrink_axis_mask, if the ith bit is set, shrink the ith
* dimension to a single element specified by begin[i],
* end[i] and strides[i] are ignored (optional, defaults
* to 0)
* 7: INT32 scalar - ellipsis_mask, only one bit can be set at maximum.
* Inserts as many missing dimensions as needed and
* select the whole slice for these dimensions.
* Allows begin, end and strides to be smaller than
* rank(input) (optional, defaults to 0)
* 8: INT32 scalar - new_axis_mask, if the ith bit is set, reshape the result
* to insert a dimension of size 1 at the ith position
* (optional, defaults to 0)
*
* Output:
* 0: TENSOR_* tensor - result of the same type as the input
*/
ANEURALNETWORKS_STRIDED_SLICE,
/**
* Binary substraction operation.
*
* Inputs:
* 0: TENSOR_* tensor - lhs
* 1: TENSOR_* tensor - rhs of the same type as lhs
* 2: INT32 scalar - FuseCode (optional, defaults to
* ANEURALNETWORKS_FUSED_NONE)
*
* Output:
* 0: TENSOR_* tensor - result of the same type as lhs
*/
ANEURALNETWORKS_SUB,
/**
* Transpose, or shuffle the dimensions of a tensor.
*
* Inputs:
* 0: TENSOR_* tensor - input
* 1: INT32 vector - perm, describes the permutations to apply, must be of
* size rank(input)
*
* Output:
* 0: TENSOR_* tensor - result of the same type as the input
*/
ANEURALNETWORKS_TRANSPOSE,
/**
* Not a valid operation.
* Used to get the number of supported operations (see
* ANeuralNetworksModel_getSupportedOperationsForQueue)
*/
ANEURALNETWORKS_OPERATION_COUNT,
};
using ANeuralNetworksOperationType = OperationCode;
/**
* Available fused activation functions.
*/
enum FuseCode : int {
ANEURALNETWORKS_FUSED_NONE,
ANEURALNETWORKS_FUSED_RELU,
ANEURALNETWORKS_FUSED_RELU1,
ANEURALNETWORKS_FUSED_RELU6,
};
/**
* Available paddings.
*/
enum PaddingCode : int {
ANEURALNETWORKS_PADDING_SAME,
ANEURALNETWORKS_PADDING_VALID,
};
#endif // INCLUDE_TENSOROPT_OPERATION_HPP