-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinitial.py
63 lines (51 loc) · 2.67 KB
/
initial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import sys
import torch
import warnings
BASE_DIR = os.path.dirname(os.path.abspath('.'))
sys.path.append(BASE_DIR)
from utils.logger import *
torch.manual_seed(0)
warnings.filterwarnings('ignore')
warnings.warn('DelftStack')
warnings.warn('Do not show this message')
os.environ['DATA_ABS_PATH'] = BASE_DIR + '/data/processed'
import argparse
def init_param():
parser = argparse.ArgumentParser(description='PyTorch Experiment')
parser.add_argument('--name', type=str, default='wine_red',
help='data name')
parser.add_argument('--log-level', type=str, default='info', help=
'log level, check the utils.logger')
parser.add_argument('--episodes', type=int, default=10, help=
'episodes for training')
parser.add_argument('--steps', type=int, default=10, help=
'steps for each episode')
parser.add_argument('--enlarge_num', type=int, default=4, help=
'feature space enlarge')
parser.add_argument('--memory', type=int, default=8, help='memory capacity')
parser.add_argument('--a', type=float, default=1, help='a')
parser.add_argument('--b', type=float, default=1, help='b')
parser.add_argument('--c', type=float, default=1, help='c')
parser.add_argument('--hidden-size', type=int, default=64)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--replay-strategy', type=str, default='random')
parser.add_argument('--ent_weight', type=float, default=1e-3, help='weight factor for entropy loss')
parser.add_argument('--init-w', type=float, default=1e-1)
parser.add_argument('--id', type=str, default='0', help='give this exp a special id!')
# -c removing the feature clustering step of GRFG
# -d using euclidean distance as feature distance metric in the M-clustering of GRFG
# -b -u Third, we developed GRFG−𝑢 and GRFG−𝑏 by using random in the two feature generation scenarios
parser.add_argument('--ablation-mode', type=str, default='')
parser.add_argument('--out-put', type=str, default='.')
# priority experiment replay related parameter
# parser.add_argument('--per-alpha', type=float, default=0.7)
# parser.add_argument('--per-beta-zero', type=float, default=0.5)
# parser.add_argument('--per-learn-start', type=int, default=1000)
# parser.add_argument('--per-steps', type=int, default=100000)
# parser.add_argument('--per-partition-num', type=int, default=100)
# parser.add_argument('--per-batch-size', type=int, default=32)
# parser.add_argument('--per-replace-old', type=bool, default=True)
# parser.add_argument('--per-priority-size', type=int, default=100)
args, _ = parser.parse_known_args()
return args