forked from pvvx/MinEspSDKLib
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathesptool.py
721 lines (614 loc) · 29 KB
/
esptool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
#!/usr/bin/env python
#
# ESP8266 ROM Bootloader Utility
# https://github.com/themadinventor/esptool
#
# Copyright (C) 2014 Fredrik Ahlberg
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
# Street, Fifth Floor, Boston, MA 02110-1301 USA.
import sys
import struct
import serial
import math
import time
import argparse
import os
import subprocess
import tempfile
class ESPROM:
# These are the currently known commands supported by the ROM
ESP_FLASH_BEGIN = 0x02
ESP_FLASH_DATA = 0x03
ESP_FLASH_END = 0x04
ESP_MEM_BEGIN = 0x05
ESP_MEM_END = 0x06
ESP_MEM_DATA = 0x07
ESP_SYNC = 0x08
ESP_WRITE_REG = 0x09
ESP_READ_REG = 0x0a
# Maximum block sized for RAM and Flash writes, respectively.
ESP_RAM_BLOCK = 0x1800
ESP_FLASH_BLOCK = 0x400
# Default baudrate. The ROM auto-bauds, so we can use more or less whatever we want.
ESP_ROM_BAUD = 115200
# First byte of the application image
ESP_IMAGE_MAGIC = 0xe9
# Initial state for the checksum routine
ESP_CHECKSUM_MAGIC = 0xef
# OTP ROM addresses
ESP_OTP_MAC0 = 0x3ff00050
ESP_OTP_MAC1 = 0x3ff00054
ESP_OTP_MAC2 = 0x3ff00058
ESP_OTP_MAC3 = 0x3ff0005c
# Sflash stub: an assembly routine to read from spi flash and send to host
SFLASH_STUB = "\x80\x3c\x00\x40\x1c\x4b\x00\x40\x21\x11\x00\x40\x00\x80" \
"\xfe\x3f\xc1\xfb\xff\xd1\xf8\xff\x2d\x0d\x31\xfd\xff\x41\xf7\xff\x4a" \
"\xdd\x51\xf9\xff\xc0\x05\x00\x21\xf9\xff\x31\xf3\xff\x41\xf5\xff\xc0" \
"\x04\x00\x0b\xcc\x56\xec\xfd\x06\xff\xff\x00\x00"
def __init__(self, port=0, baud=ESP_ROM_BAUD):
self._port = serial.Serial(port, baud)
""" Read bytes from the serial port while performing SLIP unescaping """
def read(self, length=1):
b = ''
while len(b) < length:
c = self._port.read(1)
if c == '\xdb':
c = self._port.read(1)
if c == '\xdc':
b = b + '\xc0'
elif c == '\xdd':
b = b + '\xdb'
else:
raise Exception('Invalid SLIP escape')
else:
b = b + c
return b
""" Write bytes to the serial port while performing SLIP escaping """
def write(self, packet):
buf = '\xc0' + (packet.replace('\xdb', '\xdb\xdd').replace('\xc0', '\xdb\xdc')) + '\xc0'
self._port.write(buf)
""" Calculate checksum of a blob, as it is defined by the ROM """
@staticmethod
def checksum(data, state=ESP_CHECKSUM_MAGIC):
for b in data:
state ^= ord(b)
return state
""" Send a request and read the response """
def command(self, op=None, data=None, chk=0):
if op:
# Construct and send request
pkt = struct.pack('<BBHI', 0x00, op, len(data), chk) + data
self.write(pkt)
# Read header of response and parse
if self._port.read(1) != '\xc0':
raise Exception('Invalid head of packet')
hdr = self.read(8)
(resp, op_ret, len_ret, val) = struct.unpack('<BBHI', hdr)
if resp != 0x01 or (op and op_ret != op):
raise Exception('Invalid response')
# The variable-length body
body = self.read(len_ret)
# Terminating byte
if self._port.read(1) != chr(0xc0):
raise Exception('Invalid end of packet')
return val, body
""" Perform a connection test """
def sync(self):
self.command(ESPROM.ESP_SYNC, '\x07\x07\x12\x20' + 32 * '\x55')
for i in xrange(7):
self.command()
# WiFi Off, Power 32 mA -> 14 mA
self.write_reg(0x60000710, 0x0, 0xffffffff)
""" Try connecting repeatedly until successful, or giving up """
def connect(self):
print 'Connecting...'
for _ in xrange(4):
# issue reset-to-bootloader:
# RTS = either CH_PD or nRESET (both active low = chip in reset)
# DTR = GPIO0 (active low = boot to flasher)
self._port.setDTR(False)
self._port.setRTS(True)
time.sleep(0.05)
self._port.setDTR(True)
self._port.setRTS(False)
time.sleep(0.05)
self._port.setDTR(False)
self._port.timeout = 0.3 # worst-case latency timer should be 255ms (probably <20ms)
for _ in xrange(4):
try:
self._port.flushInput()
self._port.flushOutput()
self.sync()
self._port.timeout = 5
return
except:
time.sleep(0.05)
# this is a workaround for the CH340 serial driver on current versions of Linux,
# which seems to sometimes set the serial port up with wrong parameters
self._port.close()
self._port.open()
raise Exception('Failed to connect')
"""read mac addr"""
def get_mac(self):
try:
reg1 = self.read_reg(esp.ESP_OTP_MAC0)
reg2 = self.read_reg(esp.ESP_OTP_MAC1)
reg3 = self.read_reg(esp.ESP_OTP_MAC2)
# reg4 = self.read_reg(esp.ESP_OTP_MAC3)
except:
print "Read reg error"
return False
chip_flg = (reg3 >> 15) & 0x1
if chip_flg == 0:
print 'Warning : ESP8089 CHIP DETECTED, STOP'
return False
else:
# print 'Chip_flag',chip_flg
m0 = ((reg2 >> 16) & 0xff)
m1 = ((reg2 >> 8) & 0xff)
m2 = ((reg2 & 0xff))
m3 = ((reg1 >> 24) & 0xff)
self.MAC2 = m0
self.MAC3 = m1
self.MAC4 = m2
self.MAC5 = m3
if m0 == 0:
# print "r1: %02x; r2:%02x ; r3: %02x"%(m1,m2,m3)
mac = "1A-FE-34-%02x-%02x-%02x" % (m1, m2, m3)
mac2 = "1AFE34%02x%02x%02x" % (m1, m2, m3)
mac = mac.upper()
mac2 = mac2.upper()
mac_ap = ("1A-FE-34-%02x-%02x-%02x" % (m1, m2, m3)).upper()
mac_sta = ("18-FE-34-%02x-%02x-%02x" % (m1, m2, m3)).upper()
print "MAC AP: %s" % (mac_ap)
print "MAC STA: %s" % (mac_sta)
elif m0 == 1:
# print "r1: %02x; r2:%02x ; r3: %02x"%(m1,m2,m3)
mac = "AC-D0-74-%02x-%02x-%02x" % (m1, m2, m3)
mac2 = "ACD074%02x%02x%02x" % (m1, m2, m3)
mac = mac.upper()
mac2 = mac2.upper()
mac_ap = ("AC-D0-74-%02x-%02x-%02x" % (m1, m2, m3)).upper()
mac_sta = ("AC-D0-74-%02x-%02x-%02x" % (m1, m2, m3)).upper()
print "MAC AP: %s" % (mac_ap)
print "MAC STA: %s" % (mac_sta)
return True
else:
print "MAC read error..."
return False
""" Read memory address in target """
def read_reg(self, addr):
res = self.command(ESPROM.ESP_READ_REG, struct.pack('<I', addr))
if res[1] != "\0\0":
raise Exception('Failed to read target memory')
return res[0]
""" Write to memory address in target """
def write_reg(self, addr, value, mask, delay_us=0):
if self.command(ESPROM.ESP_WRITE_REG,
struct.pack('<IIII', addr, value, mask, delay_us))[1] != "\0\0":
raise Exception('Failed to write target memory')
""" Start downloading an application image to RAM """
def mem_begin(self, size, blocks, blocksize, offset):
if self.command(ESPROM.ESP_MEM_BEGIN,
struct.pack('<IIII', size, blocks, blocksize, offset))[1] != "\0\0":
raise Exception('Failed to enter RAM download mode')
""" Send a block of an image to RAM """
def mem_block(self, data, seq):
if self.command(ESPROM.ESP_MEM_DATA,
struct.pack('<IIII', len(data), seq, 0, 0) + data, ESPROM.checksum(data))[1] != "\0\0":
raise Exception('Failed to write to target RAM')
""" Leave download mode and run the application """
def mem_finish(self, entrypoint=0):
if self.command(ESPROM.ESP_MEM_END,
struct.pack('<II', int(entrypoint == 0), entrypoint))[1] != "\0\0":
raise Exception('Failed to leave RAM download mode')
""" Start downloading to Flash (performs an erase) """
def flash_begin(self, _size, offset):
old_tmo = self._port.timeout
self._port.timeout = 10
area_len = int(_size)
sector_no = offset / 4096;
sector_num_per_block = 16;
# total_sector_num = (0== (area_len%4096))? area_len/4096 : 1+(area_len/4096);
if 0 == (area_len % 4096):
total_sector_num = area_len / 4096
else:
total_sector_num = 1 + (area_len / 4096)
# check if erase area reach over block boundary
head_sector_num = sector_num_per_block - (sector_no % sector_num_per_block);
# head_sector_num = (head_sector_num>=total_sector_num)? total_sector_num : head_sector_num;
if head_sector_num >= total_sector_num :
head_sector_num = total_sector_num
else:
head_sector_num = head_sector_num
if (total_sector_num - 2 * head_sector_num) > 0:
size = (total_sector_num - head_sector_num) * 4096
print "head: ", head_sector_num, ";total:", total_sector_num
print "erase size : ", size
else:
size = int(math.ceil(total_sector_num / 2.0) * 4096)
print "head:", head_sector_num, ";total:", total_sector_num
print "erase size :", size
if self.command(ESPROM.ESP_FLASH_BEGIN,
struct.pack('<IIII', size, 0x200, ESPROM.ESP_FLASH_BLOCK, offset))[1] != "\0\0":
raise Exception('Failed to enter Flash download mode')
self._port.timeout = old_tmo
""" Write block to flash """
def flash_block(self, data, seq):
if self.command(ESPROM.ESP_FLASH_DATA,
struct.pack('<IIII', len(data), seq, 0, 0) + data, ESPROM.checksum(data))[1] != "\0\0":
raise Exception('Failed to write to target Flash')
""" Leave flash mode and run/reboot """
def flash_finish(self, reboot=False):
res = self.command(ESPROM.ESP_FLASH_END,
struct.pack('<I', int(not reboot)))[1]
# if self.command(ESPROM.ESP_FLASH_END,
# struct.pack('<I', int(not reboot)))[1] != "\0\0":
# print res
if res[1] != "\0\0":
pass
# raise Exception('Failed to leave Flash mode')
""" Run application code in flash """
def run(self, reboot=False):
# Fake flash begin immediately followed by flash end
self.flash_begin(0, 0)
self.flash_finish(reboot)
""" Read SPI flash manufacturer and device id """
def flash_id(self):
self.flash_begin(0, 0)
self.write_reg(0x60000240, 0x0, 0xffffffff)
self.write_reg(0x60000200, 0x10000000, 0xffffffff)
flash_id = esp.read_reg(0x60000240)
self.flash_finish(False)
return flash_id
""" Read SPI flash """
def flash_read(self, offset, size, count=1):
# Create a custom stub
stub = struct.pack('<III', offset, size, count) + self.SFLASH_STUB
# Trick ROM to initialize SFlash
self.flash_begin(0, 0)
# Download stub
self.mem_begin(len(stub), 1, len(stub), 0x40100000)
self.mem_block(stub, 0)
self.mem_finish(0x4010001c)
# Fetch the data
data = ''
for _ in xrange(count):
if self._port.read(1) != '\xc0':
raise Exception('Invalid head of packet (sflash read)')
data += self.read(size)
if self._port.read(1) != chr(0xc0):
raise Exception('Invalid end of packet (sflash read)')
return data
""" Perform a chip erase of SPI flash """
def flash_erase(self):
# Trick ROM to initialize SFlash
self.flash_begin(0, 0)
# This is hacky: we don't have a custom stub, instead we trick
# the bootloader to jump to the SPIEraseChip() routine and then halt/crash
# when it tries to boot an unconfigured system.
self.mem_begin(0, 0, 0, 0x40100000)
self.mem_finish(0x40004984)
# Yup - there's no good way to detect if we succeeded.
# It it on the other hand unlikely to fail.
class ESPFirmwareImage:
def __init__(self, filename=None):
self.segments = []
self.entrypoint = 0
self.flash_mode = 0
self.flash_size_freq = 0
if filename is not None:
f = file(filename, 'rb')
(magic, segments, self.flash_mode, self.flash_size_freq, self.entrypoint) = struct.unpack('<BBBBI', f.read(8))
# some sanity check
if magic != ESPROM.ESP_IMAGE_MAGIC or segments > 16:
raise Exception('Invalid firmware image')
for i in xrange(segments):
(offset, size) = struct.unpack('<II', f.read(8))
if offset > 0x40200000 or offset < 0x3ffe0000 or size > 65536:
raise Exception('Suspicious segment %x,%d' % (offset, size))
if size > 0:
self.segments.append((offset, size, f.read(size)))
# Skip the padding. The checksum is stored in the last byte so that the
# file is a multiple of 16 bytes.
align = 15 - (f.tell() % 16)
f.seek(align, 1)
self.checksum = ord(f.read(1))
def add_segment(self, addr, data):
# Data should be aligned on word boundary
l = len(data)
if l > 0:
if l % 4:
data += b"\x00" * (4 - l % 4)
self.segments.append((addr, len(data), data))
def save(self, filename):
f = file(filename, 'wb')
f.write(struct.pack('<BBBBI', ESPROM.ESP_IMAGE_MAGIC, len(self.segments),
self.flash_mode, self.flash_size_freq, self.entrypoint))
checksum = ESPROM.ESP_CHECKSUM_MAGIC
for (offset, size, data) in self.segments:
f.write(struct.pack('<II', offset, size))
f.write(data)
checksum = ESPROM.checksum(data, checksum)
align = 15 - (f.tell() % 16)
f.seek(align, 1)
f.write(struct.pack('B', checksum))
class ELFFile:
def __init__(self, name):
self.name = name
self.symbols = None
def _fetch_symbols(self):
if self.symbols is not None:
return
self.symbols = {}
try:
tool_nm = "C:\\Espressif\\xtensa-lx106-elf\\bin\\xtensa-lx106-elf-nm.exe"
if os.getenv('XTENSA_CORE') == 'lx106':
tool_nm = "xt-nm"
proc = subprocess.Popen([tool_nm, self.name], stdout=subprocess.PIPE)
except OSError:
print "Error calling " + tool_nm + ", do you have Xtensa toolchain in PATH?"
sys.exit(1)
for l in proc.stdout:
fields = l.strip().split()
try:
self.symbols[fields[2]] = int(fields[0], 16)
except ValueError as verr:
pass
except Exception as ex:
pass
def get_symbol_addr(self, sym):
self._fetch_symbols()
return self.symbols[sym]
def load_section(self, section):
tool_objcopy = "C:\\Espressif\\xtensa-lx106-elf\\bin\\xtensa-lx106-elf-objcopy.exe"
if os.getenv('XTENSA_CORE') == 'lx106':
tool_objcopy = "xt-objcopy"
tmpsection = tempfile.mktemp(suffix=".section")
try:
subprocess.check_call([tool_objcopy, "--only-section", section, "-Obinary", self.name, tmpsection])
with open(tmpsection, "rb") as f:
data = f.read()
finally:
os.remove(tmpsection)
return data
def arg_auto_int(x):
return int(x, 0)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ESP8266 ROM Bootloader Utility', prog='esptool')
parser.add_argument(
'--port', '-p',
help='Serial port device',
default='COM0')
parser.add_argument(
'--baud', '-b',
help='Serial port baud rate',
type=arg_auto_int,
default=ESPROM.ESP_ROM_BAUD)
subparsers = parser.add_subparsers(
dest='operation',
help='Run esptool {command} -h for additional help')
parser_load_ram = subparsers.add_parser(
'load_ram',
help='Download an image to RAM and execute')
parser_load_ram.add_argument('filename', help='Firmware image')
parser_dump_mem = subparsers.add_parser(
'dump_mem',
help='Dump arbitrary memory to disk')
parser_dump_mem.add_argument('address', help='Base address', type=arg_auto_int)
parser_dump_mem.add_argument('size', help='Size of region to dump', type=arg_auto_int)
parser_dump_mem.add_argument('filename', help='Name of binary dump')
parser_read_mem = subparsers.add_parser(
'read_mem',
help='Read arbitrary memory location')
parser_read_mem.add_argument('address', help='Address to read', type=arg_auto_int)
parser_write_mem = subparsers.add_parser(
'write_mem',
help='Read-modify-write to arbitrary memory location')
parser_write_mem.add_argument('address', help='Address to write', type=arg_auto_int)
parser_write_mem.add_argument('value', help='Value', type=arg_auto_int)
parser_write_mem.add_argument('mask', help='Mask of bits to write', type=arg_auto_int)
parser_write_flash = subparsers.add_parser(
'write_flash',
help='Write a binary blob to flash')
parser_write_flash.add_argument('addr_filename', nargs='+', help='Address and binary file to write there, separated by space')
parser_write_flash.add_argument('--flash_freq', '-ff', help='SPI Flash frequency',
choices=['40m', '26m', '20m', '80m'], default='40m')
parser_write_flash.add_argument('--flash_mode', '-fm', help='SPI Flash mode',
choices=['qio', 'qout', 'dio', 'dout'], default='qio')
parser_write_flash.add_argument('--flash_size', '-fs', help='SPI Flash size in Mbit',
choices=['4m', '2m', '8m', '16m', '32m', '16m-c1', '32m-c1', '32m-c2'], default='4m')
parser_run = subparsers.add_parser(
'run',
help='Run application code in flash')
parser_image_info = subparsers.add_parser(
'image_info',
help='Dump headers from an application image')
parser_image_info.add_argument('filename', help='Image file to parse')
parser_make_image = subparsers.add_parser(
'make_image',
help='Create an application image from binary files')
parser_make_image.add_argument('output', help='Output image file')
parser_make_image.add_argument('--segfile', '-f', action='append', help='Segment input file')
parser_make_image.add_argument('--segaddr', '-a', action='append', help='Segment base address', type=arg_auto_int)
parser_make_image.add_argument('--entrypoint', '-e', help='Address of entry point', type=arg_auto_int, default=0)
parser_elf2image = subparsers.add_parser(
'elf2image',
help='Create an application image from ELF file')
parser_elf2image.add_argument('input', help='Input ELF file')
parser_elf2image.add_argument('--output', '-o', help='Output filename prefix', type=str)
parser_elf2image.add_argument('--flash_freq', '-ff', help='SPI Flash frequency',
choices=['40m', '26m', '20m', '80m'], default='40m')
parser_elf2image.add_argument('--flash_mode', '-fm', help='SPI Flash mode',
choices=['qio', 'qout', 'dio', 'dout'], default='qio')
parser_elf2image.add_argument('--flash_size', '-fs', help='SPI Flash size in Mbit',
choices=['4m', '2m', '8m', '16m', '32m', '16m-c1', '32m-c1', '32m-c2'], default='4m')
parser_elf2image.add_argument('--entry-symbol', '-es', help='Entry point symbol name (default \'call_user_start\')',
default='call_user_start')
parser_read_mac = subparsers.add_parser(
'read_mac',
help='Read MAC address from OTP ROM')
parser_flash_id = subparsers.add_parser(
'flash_id',
help='Read SPI flash manufacturer and device ID')
parser_read_flash = subparsers.add_parser(
'read_flash',
help='Read SPI flash content')
parser_read_flash.add_argument('address', help='Start address', type=arg_auto_int)
parser_read_flash.add_argument('size', help='Size of region to dump', type=arg_auto_int)
parser_read_flash.add_argument('filename', help='Name of binary dump')
parser_erase_flash = subparsers.add_parser(
'erase_flash',
help='Perform Chip Erase on SPI flash')
args = parser.parse_args()
# Create the ESPROM connection object, if needed
esp = None
if args.operation not in ('image_info', 'make_image', 'elf2image'):
esp = ESPROM(args.port, args.baud)
esp.connect()
# Do the actual work. Should probably be split into separate functions.
if args.operation == 'load_ram':
image = ESPFirmwareImage(args.filename)
print 'RAM boot...'
for (offset, size, data) in image.segments:
print 'Downloading %d bytes at %08x...' % (size, offset),
sys.stdout.flush()
esp.mem_begin(size, math.ceil(size / float(esp.ESP_RAM_BLOCK)), esp.ESP_RAM_BLOCK, offset)
seq = 0
while len(data) > 0:
esp.mem_block(data[0:esp.ESP_RAM_BLOCK], seq)
data = data[esp.ESP_RAM_BLOCK:]
seq += 1
print 'done!'
print 'All segments done, executing at %08x' % image.entrypoint
esp.mem_finish(image.entrypoint)
elif args.operation == 'read_mem':
print '0x%08x = 0x%08x' % (args.address, esp.read_reg(args.address))
elif args.operation == 'write_mem':
esp.write_reg(args.address, args.value, args.mask, 0)
print 'Wrote %08x, mask %08x to %08x' % (args.value, args.mask, args.address)
elif args.operation == 'dump_mem':
f = file(args.filename, 'wb')
for i in xrange(args.size / 4):
d = esp.read_reg(args.address + (i * 4))
f.write(struct.pack('<I', d))
if f.tell() % 1024 == 0:
print '\r%d bytes read... (%d %%)' % (f.tell(), f.tell() * 100 / args.size),
sys.stdout.flush()
print 'Done!'
elif args.operation == 'write_flash':
assert len(args.addr_filename) % 2 == 0
flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]
flash_size_freq = {'4m':0x00, '2m':0x10, '8m':0x20, '16m':0x30, '32m':0x40, '16m-c1': 0x50, '32m-c1':0x60, '32m-c2':0x70}[args.flash_size]
flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]
flash_info = struct.pack('BB', flash_mode, flash_size_freq)
while args.addr_filename:
address = int(args.addr_filename[0], 0)
filename = args.addr_filename[1]
args.addr_filename = args.addr_filename[2:]
image = file(filename, 'rb').read()
print 'Erasing flash...'
blocks = math.ceil(len(image) / float(esp.ESP_FLASH_BLOCK))
esp.flash_begin(blocks * esp.ESP_FLASH_BLOCK, address)
seq = 0
written = 0
t = time.time()
while len(image) > 0:
print '\rWriting at 0x%08x... (%d %%)' % (address + seq * esp.ESP_FLASH_BLOCK, 100 * (seq + 1) / blocks),
sys.stdout.flush()
block = image[0:esp.ESP_FLASH_BLOCK]
# Fix sflash config data
if address == 0 and seq == 0 and block[0] == '\xe9':
block = block[0:2] + flash_info + block[4:]
# Pad the last block
block = block + '\xff' * (esp.ESP_FLASH_BLOCK - len(block))
esp.flash_block(block, seq)
image = image[esp.ESP_FLASH_BLOCK:]
seq += 1
written += len(block)
t = time.time() - t
print '\nWritten %d bytes in %.2f seconds (%.2f kbit/s)...' % (written, t, written / t * 8 / 1000)
print "\nLeaving..."
esp.flash_finish(False)
elif args.operation == 'run':
esp.run()
elif args.operation == 'image_info':
image = ESPFirmwareImage(args.filename)
print ('Entry point: %08x' % image.entrypoint) if image.entrypoint != 0 else 'Entry point not set'
print '%d segments' % len(image.segments)
print
checksum = ESPROM.ESP_CHECKSUM_MAGIC
for (idx, (offset, size, data)) in enumerate(image.segments):
print 'Segment %d: %5d bytes at %08x' % (idx + 1, size, offset)
checksum = ESPROM.checksum(data, checksum)
print
print 'Checksum: %02x (%s)' % (image.checksum, 'valid' if image.checksum == checksum else 'invalid!')
elif args.operation == 'make_image':
image = ESPFirmwareImage()
if len(args.segfile) == 0:
raise Exception('No segments specified')
if len(args.segfile) != len(args.segaddr):
raise Exception('Number of specified files does not match number of specified addresses')
for (seg, addr) in zip(args.segfile, args.segaddr):
data = file(seg, 'rb').read()
image.add_segment(addr, data)
image.entrypoint = args.entrypoint
image.save(args.output)
elif args.operation == 'elf2image':
if args.output is None:
args.output = args.input + '-'
e = ELFFile(args.input)
image = ESPFirmwareImage()
image.entrypoint = e.get_symbol_addr(args.entry_symbol)
for section, start in ((".text", "_text_start"), (".data", "_data_start"), (".rodata", "_rodata_start")):
data = e.load_section(section)
image.add_segment(e.get_symbol_addr(start), data)
image.flash_mode = {'qio':0, 'qout':1, 'dio':2, 'dout': 3}[args.flash_mode]
image.flash_size_freq = {'4m':0x00, '2m':0x10, '8m':0x20, '16m':0x30, '32m':0x40, '16m-c1': 0x50, '32m-c1':0x60, '32m-c2':0x70}[args.flash_size]
image.flash_size_freq += {'40m':0, '26m':1, '20m':2, '80m': 0xf}[args.flash_freq]
image.save(args.output + "0x00000.bin")
data = e.load_section(".irom0.text")
off = e.get_symbol_addr("_irom0_text_start") - 0x40200000
assert off >= 0
f = open(args.output + "0x%05x.bin" % off, "wb")
f.write(data)
f.close()
print "{0:>10}|{1:>30}|{2:>12}|{3:>12}|{4:>8}".format("Section", "Description", "Start (hex)", "End (hex)", "Used space")
print "------------------------------------------------------------------------------"
sec_name = ["data", "rodata", "bss", "lit4", "text", "irom0_text"]
sec_des = ["Initialized Data (RAM)", "ReadOnly Data (RAM)", "Uninitialized Data (RAM)", "Uninitialized Data (IRAM)", "Uncached Code (IRAM)", "Cached Code (SPI)"]
sec_size = []
for i in range(len(sec_name)):
ss = e.get_symbol_addr('_' + sec_name[i] + '_start')
se = e.get_symbol_addr('_' + sec_name[i] + '_end')
sec_size.append(int(se - ss))
print "{0:>10}|{1:>30}|{2:>12X}|{3:>12X}|{4:>8d}".format(sec_name[i], sec_des[i], ss, se, sec_size[i])
print "------------------------------------------------------------------------------"
print "{0} : {1:X} {2}()".format("Entry Point", image.entrypoint, args.entry_symbol)
ram_used = sec_size[0] + sec_size[1] + sec_size[2]
iram_used = sec_size[3] + sec_size[4]
print "{0} : {1:d}".format("Total Used RAM", ram_used + iram_used)
print "{0} : {1:d} or {2:d} (option 48k IRAM)".format("Free IRam", 0x08000 - iram_used, 0x0C000 - iram_used)
print "{0} : {1:d}".format("Free Heap", 0x014000 - ram_used)
print "{0} : {1:d}".format("Total Free RAM", 0x020000 - iram_used - ram_used)
elif args.operation == 'read_mac':
esp.get_mac()
elif args.operation == 'flash_id':
flash_id = esp.flash_id()
print 'Manufacturer: %02x' % (flash_id & 0xff)
print 'Device: %02x%02x' % ((flash_id >> 8) & 0xff, (flash_id >> 16) & 0xff)
elif args.operation == 'read_flash':
print 'Please wait...'
file(args.filename, 'wb').write(esp.flash_read(args.address, 1024, int(math.ceil(args.size / 1024.)))[:args.size])
elif args.operation == 'erase_flash':
esp.flash_erase()