-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathreplayMemory.py
100 lines (82 loc) · 3.32 KB
/
replayMemory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""Replay Memory"""
import numpy as np
import random
from sumTree import SumTree
class ReplayMemory:
"""Store and replay (sample) memories."""
def __init__(self,
max_size,
window_size,
input_shape):
"""Setup memory.
You should specify the maximum size o the memory. Once the
memory fills up oldest values are removed.
"""
self._max_size = max_size
self._window_size = window_size
self._WIDTH = input_shape[0]
self._HEIGHT = input_shape[1]
self._memory = []
def append(self, old_state, action, reward, new_state, is_terminal):
"""Add a list of samples to the replay memory."""
num_sample = len(old_state)
if len(self._memory) >= self._max_size:
del(self._memory[0:num_sample])
for o_s, a, r, n_s, i_t in zip(old_state, action, reward, new_state, is_terminal):
self._memory.append((o_s, a, r, n_s, i_t))
def sample(self, batch_size, indexes=None):
"""Return samples from the memory.
Returns
--------
(old_state_list, action_list, reward_list, new_state_list, is_terminal_list, frequency_list)
"""
samples = random.sample(self._memory, min(batch_size, len(self._memory)))
zipped = list(zip(*samples))
zipped[0] = np.reshape(zipped[0], (-1, self._WIDTH, self._HEIGHT, self._window_size))
zipped[3] = np.reshape(zipped[3], (-1, self._WIDTH, self._HEIGHT, self._window_size))
return zipped
class PriorityExperienceReplay:
'''
Almost copy from
https://github.com/jaara/AI-blog/blob/master/Seaquest-DDQN-PER.py
'''
def __init__(self,
max_size,
window_size,
input_shape):
self.tree = SumTree(max_size)
self._max_size = max_size
self._window_size = window_size
self._WIDTH = input_shape[0]
self._HEIGHT = input_shape[1]
self.e = 0.01
self.a = 0.6
def _getPriority(self, error):
return (error + self.e) ** self.a
def append(self, old_state, action, reward, new_state, is_terminal):
for o_s, a, r, n_s, i_t in zip(old_state, action, reward, new_state, is_terminal):
# 0.5 is the maximum error
p = self._getPriority(0.5)
self.tree.add(p, data=(o_s, a, r, n_s, i_t))
def sample(self, batch_size, indexes=None):
data_batch = []
idx_batch = []
p_batch = []
segment = self.tree.total_and_count()[0] / batch_size
for i in range(batch_size):
a = segment * i
b = segment * (i + 1)
s = random.uniform(a, b)
(idx, p, data) = self.tree.get(s)
data_batch.append(data)
idx_batch.append(idx)
p_batch.append(p)
zipped = list(zip(*data_batch))
zipped[0] = np.reshape(zipped[0], (-1, self._WIDTH, self._HEIGHT, self._window_size))
zipped[3] = np.reshape(zipped[3], (-1, self._WIDTH, self._HEIGHT, self._window_size))
sum_p, count = self.tree.total_and_count()
return zipped, idx_batch, p_batch, sum_p, count
def update(self, idx_list, error_list):
for idx, error in zip(idx_list, error_list):
p = self._getPriority(error)
self.tree.update(idx, p)