-
Notifications
You must be signed in to change notification settings - Fork 11
/
skim.cxx
375 lines (327 loc) · 13 KB
/
skim.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
* Implementation of the skimming step of the analysis
*
* The skimming step reduces the inital generic samples to a dataset optimized
* for this specific analysis. Most important, the skimming removes all events
* from the initial dataset, which are not of interest for our study and builds
* from the reconstructed muons and taus a valid pair, which may originate from
* the decay of a Higgs boson.
*/
#include "ROOT/RDataFrame.hxx"
#include "ROOT/RVec.hxx"
#include "Math/Vector4D.h"
#include "TStopwatch.h"
#include <string>
#include <vector>
#include <iostream>
#include <cmath>
/*
* Base path to local filesystem or to EOS containing the datasets
*/
const std::string samplesBasePath = "root://eospublic.cern.ch//eos/opendata/cms/derived-data/AOD2NanoAODOutreachTool/";
/*
* Names of the datasets to be found in the base path and processed for the analysis
*/
const std::vector<std::string> sampleNames = {
"GluGluToHToTauTau",
"VBF_HToTauTau",
"DYJetsToLL",
"TTbar",
"W1JetsToLNu",
"W2JetsToLNu",
"W3JetsToLNu",
"Run2012B_TauPlusX",
"Run2012C_TauPlusX",
};
/*
* Compute event weights to be used for the respective datasets
*
* The event weight reweights the full dataset so that the sum of the weights
* is equal to the expected number of events in data. The expectation is given by
* multiplying the integrated luminosity of the data with the cross-section of
* the process in the datasets divided by the number of simulated events.
*/
//const float integratedLuminosity = 4.412 * 1000.0; // Run2012B only
//const float integratedLuminosity = 7.055 * 1000.0; // Run2012C only
const float integratedLuminosity = 11.467 * 1000.0; // Run2012B+C
std::map<std::string, float> eventWeights = {
{"GluGluToHToTauTau", 19.6 / 476963.0 * integratedLuminosity},
{"VBF_HToTauTau", 1.55 / 491653.0 * integratedLuminosity},
{"DYJetsToLL", 3503.7 / 30458871.0 * integratedLuminosity},
{"TTbar", 225.2 / 6423106.0 * integratedLuminosity},
{"W1JetsToLNu", 6381.2 / 29784800.0 * integratedLuminosity},
{"W2JetsToLNu", 2039.8 / 30693853.0 * integratedLuminosity},
{"W3JetsToLNu", 612.5 / 15241144.0 * integratedLuminosity},
{"Run2012B_TauPlusX", 1.0},
{"Run2012C_TauPlusX", 1.0},
};
/*
* Perform a selection on the minimal requirements of an event
*/
template <typename T>
auto MinimalSelection(T &df) {
return df.Filter("HLT_IsoMu17_eta2p1_LooseIsoPFTau20 == true", "Passes trigger")
.Filter("nMuon > 0", "nMuon > 0")
.Filter("nTau > 0", "nTau > 0");
}
/*
* Find the interesting muons in the muon collection
*/
template <typename T>
auto FindGoodMuons(T &df) {
return df.Define("goodMuons", "abs(Muon_eta) < 2.1 && Muon_pt > 17 && Muon_tightId == true");
}
/*
* Find the interesting taus in the tau collection
*
* The tau candidates in this collection represent hadronic decays of taus, which
* means that the tau decays to combinations of pions and neutrinos in the final
* state.
*/
template <typename T>
auto FindGoodTaus(T &df) {
return df.Define("goodTaus", "Tau_charge != 0 && abs(Tau_eta) < 2.3 && Tau_pt > 20 &&\
Tau_idDecayMode == true && Tau_idIsoTight == true && \
Tau_idAntiEleTight == true && Tau_idAntiMuTight == true");
}
/*
* Reduce the dataset to the interesting events containing at least one interesting
* muon and tau candidate.
*/
template <typename T>
auto FilterGoodEvents(T &df) {
return df.Filter("Sum(goodTaus) > 0", "Event has good taus")
.Filter("Sum(goodMuons) > 0", "Event has good muons");
}
/*
* Helper function to compute the difference in the azimuth coordinate taking
* the boundary conditions at 2 * pi into account.
*/
namespace Helper {
template <typename T>
float DeltaPhi(T v1, T v2, const T c = M_PI)
{
auto r = std::fmod(v2 - v1, 2.0 * c);
if (r < -c) {
r += 2.0 * c;
}
else if (r > c) {
r -= 2.0 * c;
}
return r;
}
}
/*
* Select a muon-tau pair from the collections of muons and taus passing the
* initial selection. The selected pair represents the candidate for this event
* for a Higgs boson decay to two tau leptons of which one decays to a hadronic
* final state (most likely a combination of pions) and one decays to a muon and
* a neutrino.
*/
template <typename T>
auto FindMuonTauPair(T &df) {
using namespace ROOT::VecOps;
auto build_pair = [](RVec<int>& goodMuons, RVec<float>& pt_1, RVec<float>& eta_1, RVec<float>& phi_1,
RVec<int>& goodTaus, RVec<float>& iso_2, RVec<float>& eta_2, RVec<float>& phi_2)
{
// Get indices of all possible combinations
auto comb = Combinations(pt_1, eta_2);
const auto numComb = comb[0].size();
// Find valid pairs based on delta r
std::vector<int> validPair(numComb, 0);
for(size_t i = 0; i < numComb; i++) {
const auto i1 = comb[0][i];
const auto i2 = comb[1][i];
if(goodMuons[i1] == 1 && goodTaus[i2] == 1) {
const auto deltar = sqrt(
pow(eta_1[i1] - eta_2[i2], 2) +
pow(Helper::DeltaPhi(phi_1[i1], phi_2[i2]), 2));
if (deltar > 0.5) {
validPair[i] = 1;
}
}
}
// Find best muon based on pt
int idx_1 = -1;
float maxPt = -1;
for(size_t i = 0; i < numComb; i++) {
if(validPair[i] == 0) continue;
const auto tmp = comb[0][i];
if(maxPt < pt_1[tmp]) {
maxPt = pt_1[tmp];
idx_1 = tmp;
}
}
// Find best tau based on iso
int idx_2 = -1;
float minIso = 999;
for(size_t i = 0; i < numComb; i++) {
if(validPair[i] == 0) continue;
if(int(comb[0][i]) != idx_1) continue;
const auto tmp = comb[1][i];
if(minIso > iso_2[tmp]) {
minIso = iso_2[tmp];
idx_2 = tmp;
}
}
return std::vector<int>({idx_1, idx_2});
};
return df.Define("pairIdx", build_pair,
{"goodMuons", "Muon_pt", "Muon_eta", "Muon_phi",
"goodTaus", "Tau_relIso_all", "Tau_eta", "Tau_phi"})
.Define("idx_1", "pairIdx[0]")
.Define("idx_2", "pairIdx[1]")
.Filter("idx_1 != -1", "Valid muon in selected pair")
.Filter("idx_2 != -1", "Valid tau in selected pair");
}
/*
* Declare all variables which we want to study in the analysis
*/
template <typename T>
auto DeclareVariables(T &df) {
auto add_p4 = [](float pt, float eta, float phi, float mass)
{
return ROOT::Math::PtEtaPhiMVector(pt, eta, phi, mass);
};
using namespace ROOT::VecOps;
auto get_first = [](RVec<float> &x, RVec<int>& g)
{
if (Sum(g) >= 1) return x[g][0];
return -999.f;
};
auto get_second = [](RVec<float> &x, RVec<int>& g)
{
if (Sum(g) >= 2) return x[g][1];
return -999.f;
};
auto compute_mjj = [](ROOT::Math::PtEtaPhiMVector& p4, RVec<int>& g)
{
if (Sum(g) >= 2) return float(p4.M());
return -999.f;
};
auto compute_ptjj = [](ROOT::Math::PtEtaPhiMVector& p4, RVec<int>& g)
{
if (Sum(g) >= 2) return float(p4.Pt());
return -999.f;
};
auto compute_jdeta = [](float x, float y, RVec<int>& g)
{
if (Sum(g) >= 2) return x - y;
return -999.f;
};
auto compute_mt = [](float pt_1, float phi_1, float pt_met, float phi_met)
{
const auto dphi = Helper::DeltaPhi(phi_1, phi_met);
return std::sqrt(2.0 * pt_1 * pt_met * (1.0 - std::cos(dphi)));
};
return df.Define("pt_1", "Muon_pt[idx_1]")
.Define("eta_1", "Muon_eta[idx_1]")
.Define("phi_1", "Muon_phi[idx_1]")
.Define("m_1", "Muon_mass[idx_1]")
.Define("iso_1", "Muon_pfRelIso03_all[idx_1]")
.Define("q_1", "Muon_charge[idx_1]")
.Define("pt_2", "Tau_pt[idx_2]")
.Define("eta_2", "Tau_eta[idx_2]")
.Define("phi_2", "Tau_phi[idx_2]")
.Define("m_2", "Tau_mass[idx_2]")
.Define("iso_2", "Tau_relIso_all[idx_2]")
.Define("q_2", "Tau_charge[idx_2]")
.Define("dm_2", "Tau_decayMode[idx_2]")
.Define("pt_met", "MET_pt")
.Define("phi_met", "MET_phi")
.Define("p4_1", add_p4, {"pt_1", "eta_1", "phi_1", "m_1"})
.Define("p4_2", add_p4, {"pt_2", "eta_2", "phi_2", "m_2"})
.Define("p4", "p4_1 + p4_2")
.Define("mt_1", compute_mt, {"pt_1", "phi_1", "pt_met", "phi_met"})
.Define("mt_2", compute_mt, {"pt_2", "phi_2", "pt_met", "phi_met"})
.Define("m_vis", "float(p4.M())")
.Define("pt_vis", "float(p4.Pt())")
.Define("npv", "PV_npvs")
.Define("goodJets", "Jet_puId == true && abs(Jet_eta) < 4.7 && Jet_pt > 30")
.Define("njets", "Sum(goodJets)")
.Define("jpt_1", get_first, {"Jet_pt", "goodJets"})
.Define("jeta_1", get_first, {"Jet_eta", "goodJets"})
.Define("jphi_1", get_first, {"Jet_phi", "goodJets"})
.Define("jm_1", get_first, {"Jet_mass", "goodJets"})
.Define("jbtag_1", get_first, {"Jet_btag", "goodJets"})
.Define("jpt_2", get_second, {"Jet_pt", "goodJets"})
.Define("jeta_2", get_second, {"Jet_eta", "goodJets"})
.Define("jphi_2", get_second, {"Jet_phi", "goodJets"})
.Define("jm_2", get_second, {"Jet_mass", "goodJets"})
.Define("jbtag_2", get_second, {"Jet_btag", "goodJets"})
.Define("jp4_1", add_p4, {"jpt_1", "jeta_1", "jphi_1", "jm_1"})
.Define("jp4_2", add_p4, {"jpt_2", "jeta_2", "jphi_2", "jm_2"})
.Define("jp4", "jp4_1 + jp4_2")
.Define("mjj", compute_mjj, {"jp4", "goodJets"})
.Define("ptjj", compute_ptjj, {"jp4", "goodJets"})
.Define("jdeta", compute_jdeta, {"jeta_1", "jeta_2", "goodJets"});
}
/*
* Add the event weight to the dataset as the column "weight"
*/
template <typename T>
auto AddEventWeight(T &df, const std::string& sample) {
const auto weight = eventWeights[sample];
return df.Define("weight", [weight](){ return weight; });
}
/*
* Check that the generator particles matched to the identified taus are
* actually taus and add this information to the dataset.
*
* This information is used to estimate the fraction of events that are falsely
* identified as taus, e.g., electrons or jets that could fake such a particle.
*/
template <typename T>
auto CheckGeneratorTaus(T &df, const std::string& sample) {
if (sample.find("Run2012") == 0) {
return df.Define("gen_match", "false");
} else {
return df.Define("gen_match",
"abs(GenPart_pdgId[Muon_genPartIdx[idx_1]]) == 15 && \
abs(GenPart_pdgId[Tau_genPartIdx[idx_2]]) == 15");
}
}
/*
* Declare all variables which shall end up in the final reduced dataset
*/
const std::vector<std::string> finalVariables = {
"njets", "npv",
"pt_1", "eta_1", "phi_1", "m_1", "iso_1", "q_1", "mt_1",
"pt_2", "eta_2", "phi_2", "m_2", "iso_2", "q_2", "mt_2", "dm_2",
"jpt_1", "jeta_1", "jphi_1", "jm_1", "jbtag_1",
"jpt_2", "jeta_2", "jphi_2", "jm_2", "jbtag_2",
"pt_met", "phi_met", "m_vis", "pt_vis", "mjj", "ptjj", "jdeta",
"gen_match", "run", "weight"
};
/*
* Main function of the skimming step of the analysis
*
* The function loops over all required samples, reduces the content to the
* interesting events and writes them to new files.
*/
int main() {
ROOT::EnableImplicitMT();
const auto poolSize = ROOT::GetImplicitMTPoolSize();
std::cout << "Pool size: " << poolSize << std::endl;
for (const auto &sample : sampleNames) {
std::cout << ">>> Process sample " << sample << ":" << std::endl;
TStopwatch time;
time.Start();
ROOT::RDataFrame df("Events", samplesBasePath + sample + ".root");
std::cout << "Number of events: " << *df.Count() << std::endl;
auto df2 = MinimalSelection(df);
auto df3 = FindGoodMuons(df2);
auto df4 = FindGoodTaus(df3);
auto df5 = FilterGoodEvents(df4);
auto df6 = FindMuonTauPair(df5);
auto df7 = DeclareVariables(df6);
auto df8 = CheckGeneratorTaus(df7, sample);
auto df9 = AddEventWeight(df8, sample);
auto dfFinal = df9;
auto report = dfFinal.Report();
dfFinal.Snapshot("Events", sample + "Skim.root", finalVariables);
time.Stop();
report->Print();
time.Print();
}
}