forked from nagadomi/waifu2x
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_data.lua
181 lines (175 loc) · 5.37 KB
/
convert_data.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
require 'pl'
local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
require 'image'
local cjson = require 'cjson'
local csvigo = require 'csvigo'
local compression = require 'compression'
local settings = require 'settings'
local image_loader = require 'image_loader'
local iproc = require 'iproc'
local alpha_util = require 'alpha_util'
local function crop_if_large(src, max_size)
if max_size < 0 then
return src
end
local tries = 4
if src:size(2) >= max_size and src:size(3) >= max_size then
local rect
for i = 1, tries do
local yi = torch.random(0, src:size(2) - max_size)
local xi = torch.random(0, src:size(3) - max_size)
rect = iproc.crop(src, xi, yi, xi + max_size, yi + max_size)
-- ignore simple background
if rect:float():std() >= 0 then
break
end
end
return rect
else
return src
end
end
local function crop_if_large_pair(x, y, max_size)
if max_size < 0 then
return x, y
end
local scale_y = y:size(2) / x:size(2)
local mod = 4
assert(x:size(3) == (y:size(3) / scale_y))
local tries = 4
if y:size(2) > max_size and y:size(3) > max_size then
assert(max_size % 4 == 0)
local rect_x, rect_y
for i = 1, tries do
local yi = torch.random(0, y:size(2) - max_size)
local xi = torch.random(0, y:size(3) - max_size)
if mod then
yi = yi - (yi % mod)
xi = xi - (xi % mod)
end
rect_y = iproc.crop(y, xi, yi, xi + max_size, yi + max_size)
rect_x = iproc.crop(y, xi / scale_y, yi / scale_y, xi / scale_y + max_size / scale_y, yi / scale_y + max_size / scale_y)
-- ignore simple background
if rect_y:float():std() >= 0 then
break
end
end
return rect_x, rect_y
else
return x, y
end
end
local function padding_x(x, pad, x_zero)
if pad > 0 then
if x_zero then
x = iproc.zero_padding(x, pad, pad, pad, pad)
else
x = iproc.padding(x, pad, pad, pad, pad)
end
end
return x
end
local function padding_xy(x, y, pad, x_zero, y_zero)
local scale = y:size(2) / x:size(2)
if pad > 0 then
if x_zero then
x = iproc.zero_padding(x, pad, pad, pad, pad)
else
x = iproc.padding(x, pad, pad, pad, pad)
end
if y_zero then
y = iproc.zero_padding(y, pad * scale, pad * scale, pad * scale, pad * scale)
else
y = iproc.padding(y, pad * scale, pad * scale, pad * scale, pad * scale)
end
end
return x, y
end
local function load_images(list)
local MARGIN = 32
local csv = csvigo.load({path = list, verbose = false, mode = "raw"})
local x = {}
local skip_notice = false
for i = 1, #csv do
local filters = nil
local filename = csv[i][1]
local csv_meta = csv[i][2]
if csv_meta and csv_meta:len() > 0 then
csv_meta = cjson.decode(csv_meta)
end
if csv_meta and csv_meta.filters then
filters = csv_meta.filters
end
local basename_y = path.basename(filename)
local im, meta = image_loader.load_byte(filename)
local skip = false
local alpha_color = torch.random(0, 1)
if im then
if meta and meta.alpha then
if settings.use_transparent_png then
im = alpha_util.fill(im, meta.alpha, alpha_color)
else
skip = true
end
end
if skip then
if not skip_notice then
io.stderr:write("skip transparent png (settings.use_transparent_png=0)\n")
skip_notice = true
end
else
if csv_meta and csv_meta.x then
-- method == user
local yy = im
local xx, meta2 = image_loader.load_byte(csv_meta.x)
if settings.invert_x then
xx = (-(xx:long()) + 255):byte()
end
if xx then
if meta2 and meta2.alpha then
xx = alpha_util.fill(xx, meta2.alpha, alpha_color)
end
xx, yy = crop_if_large_pair(xx, yy, settings.max_training_image_size)
xx, yy = padding_xy(xx, yy, settings.padding, settings.padding_x_zero, settings.padding_y_zero)
if settings.grayscale then
xx = iproc.rgb2y(xx)
yy = iproc.rgb2y(yy)
end
table.insert(x, {{y = compression.compress(yy), x = compression.compress(xx)},
{data = {filters = filters, has_x = true, basename = basename_y}}})
else
io.stderr:write(string.format("\n%s: skip: load error.\n", csv_meta.x))
end
else
im = crop_if_large(im, settings.max_training_image_size)
im = iproc.crop_mod4(im)
im = padding_x(im, settings.padding, settings.padding_x_zero)
local scale = 1.0
if settings.random_half_rate > 0.0 then
scale = 2.0
end
if im:size(2) > (settings.crop_size * scale + MARGIN) and im:size(3) > (settings.crop_size * scale + MARGIN) then
if settings.grayscale then
im = iproc.rgb2y(im)
end
table.insert(x, {compression.compress(im), {data = {filters = filters, basename = basename_y}}})
else
io.stderr:write(string.format("\n%s: skip: image is too small (%d > size).\n", filename, settings.crop_size * scale + MARGIN))
end
end
end
else
io.stderr:write(string.format("\n%s: skip: load error.\n", filename))
end
xlua.progress(i, #csv)
if i % 10 == 0 then
collectgarbage()
end
end
return x
end
torch.manualSeed(settings.seed)
print(settings)
local x = load_images(settings.image_list)
torch.save(settings.images, x)