diff --git a/backend/app/services/crucible_readme.md b/backend/app/services/crucible_readme.md
new file mode 100644
index 00000000..0ac2e71f
--- /dev/null
+++ b/backend/app/services/crucible_readme.md
@@ -0,0 +1,164 @@
+Crucible divides data across a set of OpenSearch (or ElasticSearch) indices,
+each with a specific document mapping. CDM index names include a "root" name
+(like "run") with a versioned prefix, like "cdmv7dev-run".
+
+Crucible timestamps are integers in "millisecond-from-the-epoch" format.
+
+The Crucible CDM hierarchy is roughly:
+
+- RUN (an instrumented benchmark run)
+ - TAG (metadata)
+ - ITERATION (a benchmark interval)
+ - PARAM (execution parameters)
+ - SAMPLE
+ - PERIOD (time range where data is recorded)
+ - METRIC_DESC (description of a specific recorded metric)
+ - METRIC_DATA (a specific recorded data point)
+
+OpenSearch doesn't support the concept of a SQL "join", but many of the indices
+contain documents that could be considered a static "join" with parent documents
+for convenience. For example, each `iteration` document contains a copy of it's
+parent `run` document, while the `period` document contains copies of its parent
+`sample`, `iteration`, and `run` documents. This means, for example, that it's
+possible to make a single query returning all `period` documents for specific
+iteration number of a specific run.
+
+
+- RUN
- this contains the basic information about a performance run, including a
+ generated UUID, begin and end timestamps, a benchmark name, a user name and
+ email, the (host/directory) "source" of the indexed data (which is usable on
+ the controler's local file system), plus host and test harness names.
+- TAG
- this contains information about a general purpose "tag" to associate some
+ arbitrary context with a run, for example software versions, hardware, or
+ other metadata. This can be considered a SQL JOIN with the run document,
+ adding a tag UUID, name, and value.
+- ITERATION
- this contains basic information about a performance run iteration,
+ including the iteration UUID, number, the primary (benchmark) metric associated
+ with the iteration, plus the primary "period" of the iteration, and the
+ iteration status.
+- PARAM
- this defines a key/value pair specifying behavior of the benchmark
+ script for an iteration. Parameters are iteration-specific, but parameters that
+ don't vary between iterations are often represented as run parameters.
+- SAMPLE
- this contains basic information about a sample of an iteration,
+ including a sample UUID and sample number, along with a "path" for sample data
+ and a sample status.
+- PERIOD
- this contains basic information about a period during which data is
+ collected within a sample, including the period UUID, name, and begin and end
+ timestamps. A set of periods can be "linked" through a "prev_id" field.
+- METRIC_DESC
- this contains descriptive data about a specific series
+ of metric values within a specific period of a run, including the metric UUID,
+ the metric "class", type, and source, along with a set of "names" (key/value
+ pairs) defining the metric breakout details that narrow down a specific source and
+ type. For example source:mpstat, type:Busy-CPU data is broken down by package, cpu,
+ core, and other breakouts which can be isolated or aggregated for data reporting.
+- METRIC_DATA
- this describes a specific data point, sampled over a specified
+ duration with a fixed begin and end timestamp, plus a floating point value.
+ Each is tied to a specific metric_desc UUID value. Depending on the varied
+ semantics of metric_desc breakouts, it's often valid to aggregate these
+ across a set of relatead metric_desc IDs, based on source and type, for
+ example to get aggregate CPU load across all modes, cores, or across all
+ modes within a core. This service allows arbitrary aggregation within a
+ given metric source and type, but by default will attempt to direct the
+ caller to specifying a set of breakouts that result in a single metric_desc
+ ID.
+
+
+The `crucible_svc` allows CPT project APIs to access a Crucible CDM backing
+store to find information about runs, tags, params, iterations, samples,
+periods, plus various ways to expose and aggregate metric data both for
+primary benchmarks and non-periodic tools.
+
+The `get_runs` API is the primary entry point, returning an object that
+supports filtering, sorting, and pagination of the Crucible run data decorated
+with useful iteration, tag, and parameter data.
+
+The metrics data APIs (data, breakouts, summary, and graph) now allow
+filtering by the metric "name" data. This allows "drilling down" through
+the non-periodic "tool data". For example, IO data is per-disk, CPU
+information is broken down by core and package. You can now aggregate
+all global data (e.g., total system CPU), or filter by breakout names to
+select by CPU, mode (usr, sys, irq), etc.
+
+For example, to return `Busy-CPU` ("type") graph data from the `mpstat`
+("source") tool for system mode on one core, you might query:
+
+```
+/api/v1/ilab/runs//graph/mpstat::Busy-CPU?name=core=12,package=1,num=77,type=sys
+```
+
+If you make a `graph`, `data`, or `summary` query that doesn't translate
+to a unique metric, and don't select aggregation, you'll get a diagnostic
+message identifying possible additional filters. For example, with
+`type=sys` removed, that same query will show the available values for
+the `type` breakout name:
+
+```
+{
+ "detail": [
+ {
+ "message": "More than one metric (5) probably means you should add filters",
+ "names": {
+ "type": [
+ "guest",
+ "irq",
+ "soft",
+ "sys",
+ "usr"
+ ]
+ },
+ "periods": []
+ }
+ ]
+}
+```
+
+This capability can be used to build an interactive exploratory UI to
+allow displaying breakout details. The `get_metrics` API will show all
+recorded metrics, along with information the names and values used in
+those. Metrics that show "names" with more than one value will need to be
+filtered to produce meaningful summaries or graphs.
+
+You can instead aggregate metrics across breakouts using the `?aggregate`
+query parameter, like `GET /api/v1/ilab/runs//graph/mpstat::Busy-CPU?aggregate`
+which will aggregate all CPU busy data for the system.
+
+Normally you'll want to display data based on sample periods, for example the
+primary period of an iteration, using `?period=`. This will
+implicitly constrain the metric data based on the period ID associated with
+the `metric_desc` document *and* the begin/end time period of the selected
+periods. Normally, a benchmark will will separate iterations because each is
+run with a different parameter value, and the default graph labeling will
+look for a set of distinct parameters not used by other iterations: for
+example, `mpstat::Busy-CPU (batch-size=16)`.
+
+The `get_breakouts` API can be used to explore the namespace recorded for that
+metric in the specified run. For example,
+
+```
+GET /api/v1/ilab/runs//breakouts/sar-net::packets-sec?name=direction=rx
+{
+ "label": "sar-net::packets-sec",
+ "source": "sar-net",
+ "type": "packets-sec",
+ "class": [],
+ "names": {
+ "dev": [
+ "lo",
+ "eno12409",
+ "eno12399"
+ ],
+ "type": [
+ "physical",
+ "virtual"
+ ]
+ }
+}
+```
+
+The `get_filters` API reports all the tag and param filter tags and
+values for the runs. These can be used for the `filters` query parameter
+on `get_runs` to restrict the set of runs reported; for example,
+`/api/v1/ilab/runs?filter=param:workflow=sdg` shows only runs with the param
+arg `workflow` set to the value `sdg`. You can search for a subset of the
+string value using the operator "~" instead of "=". For example,
+`?filter=param:user~user` will match `user` values of "A user" or "The user".
diff --git a/backend/app/services/crucible_svc.py b/backend/app/services/crucible_svc.py
new file mode 100644
index 00000000..7ae9ac12
--- /dev/null
+++ b/backend/app/services/crucible_svc.py
@@ -0,0 +1,1988 @@
+"""Service to pull data from a Crucible CDM OpenSearch data store
+
+A set of helper methods to enable a project API to easily process data from a
+Crucible controller's OpenSearch data backend.
+
+This includes paginated, filtered, and sorted lists of benchmark runs, along
+access to the associated Crucible documents such as iterations, samples, and
+periods. Metric data can be accessed by breakout names, or aggregated by
+breakout subsets or collection periods as either raw data points, statistical
+aggregate, or Plotly graph format for UI display.
+"""
+
+import time
+from collections import defaultdict
+from dataclasses import dataclass
+from datetime import datetime, timezone
+from typing import Any, Iterator, Optional, Tuple, Union
+
+from elasticsearch import AsyncElasticsearch, NotFoundError
+from fastapi import HTTPException, status
+from pydantic import BaseModel
+
+from app import config
+
+
+class Graph(BaseModel):
+ """Describe a single graph
+
+ This represents a JSON object provided by a caller through the get_graph
+ API to describe a specific metric graph.
+
+ The default title (if the field is omitted) is the metric label with a
+ suffix denoting breakout values selected, any unique parameter values
+ in a selected iteration, and (if multiple runs are selected in any Graph
+ list) an indication of the run index. For example,
+ "mpstat::Busy-CPU [core=2,type=usr] (batch-size=16)".
+
+ Fields:
+ metric: the metric label, "ilab::train-samples-sec"
+ aggregate: True to aggregate unspecified breakouts
+ color: CSS color string ("green" or "#008000")
+ names: Lock in breakouts
+ periods: Select metrics for specific test period(s)
+ run: Override the default run ID from GraphList
+ title: Provide a title for the graph. The default is a generated title
+ """
+
+ metric: str
+ aggregate: bool = False
+ color: Optional[str] = None
+ names: Optional[list[str]] = None
+ periods: Optional[list[str]] = None
+ run: Optional[str] = None
+ title: Optional[str] = None
+
+
+class GraphList(BaseModel):
+ """Describe a set of overlaid graphs
+
+ This represents a JSON object provided by a caller through the get_graph
+ API to introduce a set of constrained metrics to be graphed. The "run
+ ID" here provides a default for the embedded Graph objects, and can be
+ omitted if all Graph objects specify a run ID. (This is most useful to
+ select a set of graphs all for a single run ID.)
+
+ Fields:
+ run: Specify the (default) run ID
+ name: Specify a name for the set of graphs
+ graphs: a list of Graph objects
+ """
+
+ run: Optional[str] = None
+ name: str
+ graphs: list[Graph]
+
+
+@dataclass
+class Point:
+ """Graph point
+
+ Record the start & end timestamp and value of a metric data point
+ """
+
+ begin: int
+ end: int
+ value: float
+
+
+colors = [
+ "black",
+ "aqua",
+ "blue",
+ "fuschia",
+ "gray",
+ "green",
+ "maroon",
+ "navy",
+ "olive",
+ "teal",
+ "silver",
+ "lightskyblue",
+ "mediumspringgreen",
+ "mistyrose",
+ "darkgoldenrod",
+ "cadetblue",
+ "chocolate",
+ "coral",
+ "brown",
+ "bisque",
+ "deeppink",
+ "sienna",
+]
+
+
+@dataclass
+class Term:
+ namespace: str
+ key: str
+ value: str
+
+
+class Parser:
+ """Help parsing filter expressions."""
+
+ def __init__(self, term: str):
+ """Construct an instance to help parse query parameter expressions
+
+ These consist of a sequence of tokens separated by delimiters. Each
+ token may be quoted to allow matching against strings with spaces.
+
+ For example, `param:name="A string"`
+
+ Args:
+ term: A filter expression to parse
+ """
+ self.buffer = term
+ self.context = term
+ self.offset = 0
+
+ def _next_token(
+ self, delimiters: list[str] = [], optional: bool = False
+ ) -> Tuple[str, Union[str, None]]:
+ """Extract the next token from an expression
+
+ Tokens may be quoted; the quotes are removed. for example, the two
+ expressions `'param':"workflow"='"sdg"'` and `param:workflow:sdg` are
+ identical.
+
+ Args:
+ delimiters: a list of delimiter characters
+ optional: whether the terminating delimiter is optional
+
+ Returns:
+ A tuple consisting of the token and the delimiter (or None if
+ parsing reached the end of the expression and the delimiter was
+ optional)
+ """
+
+ @dataclass
+ class Quote:
+ open: int
+ quote: str
+
+ quoted: list[Quote] = []
+ next_char = None
+ token = ""
+ first_quote = None
+ for o in range(len(self.buffer)):
+ next_char = self.buffer[o]
+ if next_char in delimiters and not quoted:
+ self.buffer = self.buffer[o + 1 :]
+ self.offset += o + 1
+ break
+ elif next_char in ('"', "'"):
+ if o == 0:
+ first_quote = next_char
+ if quoted and quoted[-1].quote == next_char:
+ quoted.pop()
+ else:
+ quoted.append(Quote(o, next_char))
+ token += next_char
+ else:
+ next_char = None
+ if quoted:
+ q = quoted[-1]
+ c = self.context
+ i = q.open + self.offset
+ annotated = c[:i] + "[" + c[i] + "]" + c[i + 1 :]
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST, f"Unterminated quote at {annotated!r}"
+ )
+
+ # If delimiters are specified, and not optional, then we didn't
+ # find one, and that's an error.
+ if not optional and delimiters:
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST,
+ f"Missing delimiter from {','.join(delimiters)} after {token!r}",
+ )
+ self.buffer = ""
+ self.offset = len(self.context)
+ return (token, next_char) if not first_quote else (token[1:-1], next_char)
+
+
+class CommonParams:
+ """Help with sorting out parameters
+
+ Parameter values are associated with iterations, but often a set of
+ parameters is common across all iterations of a run, and that set can
+ provide useful context.
+
+ This helps to filter out identical parameters across a set of
+ iterations.
+ """
+
+ def __init__(self):
+ self.common: dict[str, Any] = {}
+ self.omit = set()
+
+ def add(self, params: dict[str, Any]):
+ """Add a new iteration into the param set
+
+ Mark all parameter keys which don't appear in all iterations, or which
+ have different values in at least one iteration, to be omitted from the
+ merged "common" param set.
+
+ Args:
+ params: the param dictionary of an iteration
+ """
+ if not self.common:
+ self.common.update(params)
+ else:
+ for k, v in self.common.items():
+ if k not in self.omit and (k not in params or v != params[k]):
+ self.omit.add(k)
+
+ def render(self) -> dict[str, Any]:
+ """Return a new param set with only common params"""
+ return {k: v for k, v in self.common.items() if k not in self.omit}
+
+
+class CrucibleService:
+ """Support convenient generalized access to Crucible data
+
+ This implements access to the "v7" Crucible "Common Data Model" through
+ OpenSearch queries.
+ """
+
+ # OpenSearch massive limit on hits in a single query
+ BIGQUERY = 262144
+
+ # Define the 'run' document fields that support general filtering via
+ # `?filter=:`
+ #
+ # TODO: this excludes 'desc', which isn't used by the ilab runs, and needs
+ # different treatment as it's a text field rather than a term. It's not an
+ # immediate priority for ilab, but may be important for general use.
+ RUN_FILTERS = ("benchmark", "email", "name", "source", "harness", "host")
+
+ # Define the keywords for sorting.
+ DIRECTIONS = ("asc", "desc")
+ FIELDS = (
+ "begin",
+ "benchmark",
+ "desc",
+ "email",
+ "end",
+ "harness",
+ "host",
+ "id",
+ "name",
+ "source",
+ )
+
+ def __init__(self, configpath: str = "crucible"):
+ """Initialize a Crucible CDM (OpenSearch) connection.
+
+ Generally the `configpath` should be scoped, like `ilab.crucible` so
+ that multiple APIs based on access to distinct Crucible controllers can
+ coexist.
+
+ Initialization includes making an "info" call to confirm and record the
+ server response.
+
+ Args:
+ configpath: The Vyper config path (e.g., "ilab.crucible")
+ """
+ self.cfg = config.get_config()
+ self.user = self.cfg.get(configpath + ".username")
+ self.password = self.cfg.get(configpath + ".password")
+ self.auth = (self.user, self.password) if self.user or self.password else None
+ self.url = self.cfg.get(configpath + ".url")
+ self.elastic = AsyncElasticsearch(self.url, basic_auth=self.auth)
+
+ @staticmethod
+ def _get_index(root: str) -> str:
+ return "cdmv7dev-" + root
+
+ @staticmethod
+ def _split_list(alist: Optional[list[str]] = None) -> list[str]:
+ """Split a list of parameters
+
+ For simplicity, the APIs supporting "list" query parameters allow
+ each element in the list to be a comma-separated list of strings.
+ For example, ["a", "b", "c"] is logically the same as ["a,b,c"].
+
+ This method normalizes the second form into first to simplify life for
+ consumers.
+
+ Args:
+ alist: list of names or name lists
+
+ Returns:
+ A simple list of options
+ """
+ l: list[str] = []
+ if alist:
+ for n in alist:
+ l.extend(n.split(","))
+ return l
+
+ @staticmethod
+ def _normalize_date(value: Optional[Union[int, str, datetime]]) -> int:
+ """Normalize date parameters
+
+ The Crucible data model stores dates as string representations of an
+ integer "millseconds-from-epoch" value. To allow flexibility, this
+ Crucible service allows incoming dates to be specified as ISO-format
+ strings, as integers, or as the stringified integer.
+
+ That is, "2024-09-12 18:29:35.123000+00:00", "1726165775123", and
+ 1726165775123 are identical.
+
+ Args:
+ value: Representation of a date-time value
+
+ Returns:
+ The integer milliseconds-from-epoch equivalent
+ """
+ try:
+ if isinstance(value, int):
+ return value
+ elif isinstance(value, datetime):
+ return int(value.timestamp() * 1000.0)
+ elif isinstance(value, str):
+ try:
+ return int(value)
+ except ValueError:
+ pass
+ try:
+ d = datetime.fromisoformat(value)
+ return int(d.timestamp() * 1000.0)
+ except ValueError:
+ pass
+ except Exception as e:
+ print(f"normalizing {type(value).__name__} {value} failed with {str(e)}")
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST,
+ f"Date representation {value} is not a date string or timestamp",
+ )
+
+ @staticmethod
+ def _hits(
+ payload: dict[str, Any], fields: Optional[list[str]] = None
+ ) -> Iterator[dict[str, Any]]:
+ """Helper to iterate through OpenSearch query matches
+
+ Iteratively yields the "_source" of each hit. As a convenience, can
+ yield a sub-object of "_source" ... for example, specifying the
+ optional "fields" as ["metric_desc", "id"] will yield the equivalent of
+ hit["_source"]["metric_desc"]["id"]
+
+ Args:
+ payload: OpenSearch reponse payload
+ fields: Optional sub-fields of "_source"
+
+ Returns:
+ Yields each object from the "greatest hits" list
+ """
+ if "hits" not in payload:
+ raise HTTPException(
+ status_code=500, detail=f"Attempt to iterate hits for {payload}"
+ )
+ hits = payload.get("hits", {}).get("hits", [])
+ for h in hits:
+ source = h["_source"]
+ if fields:
+ for f in fields:
+ source = source[f]
+ yield source
+
+ @staticmethod
+ def _aggs(payload: dict[str, Any], aggregation: str) -> Iterator[dict[str, Any]]:
+ """Helper to access OpenSearch aggregations
+
+ Iteratively yields the name and value of each aggregation returned
+ by an OpenSearch query. This can also be used for nested aggregations
+ by specifying an aggregation object.
+
+ Args:
+ payload: A JSON dict containing an "aggregations" field
+
+ Returns:
+ Yields each aggregation from an aggregation bucket list
+ """
+ if "aggregations" not in payload:
+ raise HTTPException(
+ status_code=500,
+ detail=f"Attempt to iterate missing aggregations for {payload}",
+ )
+ aggs = payload["aggregations"]
+ if aggregation not in aggs:
+ raise HTTPException(
+ status_code=500,
+ detail=f"Attempt to iterate missing aggregation {aggregation} for {payload}",
+ )
+ for agg in aggs[aggregation]["buckets"]:
+ yield agg
+
+ @staticmethod
+ def _format_timestamp(timestamp: Union[str, int]) -> str:
+ """Convert stringified integer milliseconds-from-epoch to ISO date"""
+ try:
+ ts = int(timestamp)
+ except Exception as e:
+ print(f"ERROR: invalid {timestamp!r}: {str(e)!r}")
+ ts = 0
+ return str(datetime.fromtimestamp(ts / 1000.00, timezone.utc))
+
+ @classmethod
+ def _format_data(cls, data: dict[str, Any]) -> dict[str, Any]:
+ """Helper to format a "metric_data" object
+
+ Crucible stores the date, duration, and value as strings, so this
+ converts them to more useful values. The end timestamp is converted
+ to an ISO date-time string; the duration and value to floating point
+ numbers.
+
+ Args:
+ data: a "metric_data" object
+
+ Returns:
+ A neatly formatted "metric_data" object
+ """
+ return {
+ "begin": cls._format_timestamp(data["begin"]),
+ "end": cls._format_timestamp(data["end"]),
+ "duration": int(data["duration"]) / 1000,
+ "value": float(data["value"]),
+ }
+
+ @classmethod
+ def _format_period(cls, period: dict[str, Any]) -> dict[str, Any]:
+ """Helper to format a "period" object
+
+ Crucible stores the date values as stringified integers, so this
+ converts the begin and end timestamps to ISO date-time strings.
+
+ Args:
+ period: a "period" object
+
+ Returns:
+ A neatly formatted "period" object
+ """
+ return {
+ "begin": cls._format_timestamp(timestamp=period["begin"]),
+ "end": cls._format_timestamp(period["end"]),
+ "id": period["id"],
+ "name": period["name"],
+ }
+
+ @classmethod
+ def _build_filter_options(cls, filter: Optional[list[str]] = None) -> Tuple[
+ Optional[list[dict[str, Any]]],
+ Optional[list[dict[str, Any]]],
+ Optional[list[dict[str, Any]]],
+ ]:
+ """Build filter terms for tag and parameter filter terms
+
+ Each term has the form ":". Any term
+ may be quoted: quotes are stripped and ignored. (This is generally only
+ useful on the to include spaces.)
+
+ We support three namespaces:
+ param: Match against param index arg/val
+ tag: Match against tag index name/val
+ run: Match against run index fields
+
+ We support two operators:
+ =: Exact match
+ ~: Partial match
+
+ Args:
+ filter: list of filter terms like "param:key=value"
+
+ Returns:
+ A set of OpenSearch filter object lists to detect missing
+ and matching documents for params, tags, and run fields. For
+ example, to select param:batch-size=12 results in the
+ following param filter list:
+
+ [
+ {'
+ dis_max': {
+ 'queries': [
+ {
+ 'bool': {
+ 'must': [
+ {'term': {'param.arg': 'batch-size'}},
+ {'term': {'param.val': '12'}}
+ ]
+ }
+ }
+ ]
+ }
+ }
+ ]
+ """
+ terms = defaultdict(list)
+ for term in cls._split_list(filter):
+ p = Parser(term)
+ namespace, _ = p._next_token([":"])
+ key, operation = p._next_token(["=", "~"])
+ value, _ = p._next_token()
+ if operation == "~":
+ value = f".*{value}.*"
+ matcher = "regexp"
+ else:
+ matcher = "term"
+ if namespace in ("param", "tag"):
+ if namespace == "param":
+ key_field = "param.arg"
+ value_field = "param.val"
+ else:
+ key_field = "tag.name"
+ value_field = "tag.val"
+ terms[namespace].append(
+ {
+ "bool": {
+ "must": [
+ {"term": {key_field: key}},
+ {matcher: {value_field: value}},
+ ]
+ }
+ }
+ )
+ elif namespace == "run":
+ terms[namespace].append({matcher: {f"run.{key}": value}})
+ else:
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST,
+ f"unknown filter namespace {namespace!r}",
+ )
+ param_filter = None
+ tag_filter = None
+ if "param" in terms:
+ param_filter = [{"dis_max": {"queries": terms["param"]}}]
+ if "tag" in terms:
+ tag_filter = [{"dis_max": {"queries": terms["tag"]}}]
+ return param_filter, tag_filter, terms.get("run")
+
+ @classmethod
+ def _build_name_filters(
+ cls, namelist: Optional[list[str]] = None
+ ) -> list[dict[str, Any]]:
+ """Build filter terms for metric breakout names
+
+ for example, "cpu=10" filters for metric data descriptors where the
+ breakout name "cpu" exists and has a value of 10.
+
+ Args:
+ namelist: list of possibly comma-separated list values
+
+ Returns:
+ A list of filters to match breakout terms
+ """
+ names: list[str] = cls._split_list(namelist)
+ filters = []
+ for e in names:
+ try:
+ n, v = e.split("=", maxsplit=1)
+ except ValueError:
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST, f"Filter item {e} must be '='"
+ )
+ filters.append({"term": {f"metric_desc.names.{n}": v}})
+ return filters
+
+ @classmethod
+ def _build_period_filters(
+ cls, periodlist: Optional[list[str]] = None
+ ) -> list[dict[str, Any]]:
+ """Build period filters
+
+ Generate metric_desc filter terms to match against a list of period IDs.
+
+ Note that not all metric descriptions are periodic, and we don't want
+ these filters to exclude them -- so the filter will exclude only
+ documents that have a period and don't match. (That is, we won't drop
+ any non-periodic metrics. We expect those to be filtered by timestamp
+ instead.)
+
+ Args:
+ period: list of possibly comma-separated period IDs
+
+ Returns:
+ A filter term that requires a period.id match only for metric_desc
+ documents with a period.
+ """
+ pl: list[str] = cls._split_list(periodlist)
+ if pl:
+ return [
+ {
+ "dis_max": {
+ "queries": [
+ {"bool": {"must_not": {"exists": {"field": "period"}}}},
+ {"terms": {"period.id": pl}},
+ ]
+ }
+ }
+ ]
+ else:
+ return []
+
+ @classmethod
+ def _build_metric_filters(
+ cls,
+ run: str,
+ metric: str,
+ names: Optional[list[str]] = None,
+ periods: Optional[list[str]] = None,
+ ) -> list[dict[str, Any]]:
+ """Helper for filtering metric descriptions
+
+ We normally filter by run, metric "label", and optionally by breakout
+ names and periods. This encapsulates the filter construction.
+
+ Args:
+ run: run ID
+ metric: metric label (ilab::sdg-samples-sec)
+ names: list of "name=value" filters
+ periods: list of period IDs
+
+ Returns:
+ A list of OpenSearch filter expressions
+ """
+ msource, mtype = metric.split("::")
+ return (
+ [
+ {"term": {"run.id": run}},
+ {"term": {"metric_desc.source": msource}},
+ {"term": {"metric_desc.type": mtype}},
+ ]
+ + cls._build_name_filters(names)
+ + cls._build_period_filters(periods)
+ )
+
+ @classmethod
+ def _build_sort_terms(cls, sorters: Optional[list[str]]) -> list[dict[str, str]]:
+ """Build sort term list
+
+ Sorters may reference any native `run` index field and must specify
+ either "asc"(ending) or "desc"(ending) sort order. Any number of
+ sorters may be combined, like ["name:asc,benchmark:desc", "end:desc"]
+
+ Args:
+ sorters: list of : sort terms
+
+ Returns:
+ list of OpenSearch sort terms
+ """
+ if sorters:
+ sort_terms = []
+ for s in sorters:
+ key, dir = s.split(":", maxsplit=1)
+ if dir not in cls.DIRECTIONS:
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST,
+ f"Sort direction {dir!r} must be one of {','.join(DIRECTIONS)}",
+ )
+ if key not in cls.FIELDS:
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST,
+ f"Sort key {key!r} must be one of {','.join(FIELDS)}",
+ )
+ sort_terms.append({f"run.{key}": dir})
+ else:
+ sort_terms = [{"run.begin": "asc"}]
+ return sort_terms
+
+ async def _search(
+ self, index: str, query: Optional[dict[str, Any]] = None, **kwargs
+ ) -> dict[str, Any]:
+ """Issue an OpenSearch query
+
+ Args:
+ index: The "base" CDM index name, e.g., "run", "metric_desc"
+ query: An OpenSearch query object
+ kwargs: Additional OpenSearch parameters
+
+ Returns:
+ The OpenSearch response payload (JSON dict)
+ """
+ idx = self._get_index(index)
+ start = time.time()
+ value = await self.elastic.search(index=idx, body=query, **kwargs)
+ print(
+ f"QUERY on {idx} took {time.time() - start} seconds, "
+ f"hits: {value.get('hits', {}).get('total')}"
+ )
+ return value
+
+ async def close(self):
+ """Close the OpenSearch connection"""
+ if self.elastic:
+ await self.elastic.close()
+ self.elastic = None
+
+ async def search(
+ self,
+ index: str,
+ filters: Optional[list[dict[str, Any]]] = None,
+ aggregations: Optional[dict[str, Any]] = None,
+ sort: Optional[list[dict[str, str]]] = None,
+ source: Optional[str] = None,
+ size: Optional[int] = None,
+ offset: Optional[int] = None,
+ **kwargs,
+ ) -> dict[str, Any]:
+ """OpenSearch query helper
+
+ Combine index, filters, aggregations, sort, and pagination options
+ into an OpenSearch query.
+
+ Args:
+ index: "root" CDM index name ("run", "metric_desc", ...)
+ filters: list of JSON dict filter terms {"term": {"name": "value}}
+ aggregations: list of JSON dict aggregations {"name": {"term": "name"}}
+ sort: list of JSON dict sort terms ("name": "asc")
+ size: The number of hits to return; defaults to "very large"
+ offset: The number of hits to skip, for pagination
+ kwargs: Additional OpenSearch options
+
+ Returns:
+ The OpenSearch response
+ """
+ f = filters if filters else []
+ query = {
+ "size": self.BIGQUERY if size is None else size,
+ "query": {"bool": {"filter": f}},
+ }
+ if sort:
+ query.update({"sort": sort})
+ if source:
+ query.update({"_source": source})
+ if offset:
+ query.update({"from": offset})
+ if aggregations:
+ query.update({"aggs": aggregations})
+ return await self._search(index, query, **kwargs)
+
+ async def _get_metric_ids(
+ self,
+ run: str,
+ metric: str,
+ namelist: Optional[list[str]] = None,
+ periodlist: Optional[list[str]] = None,
+ aggregate: bool = False,
+ ) -> list[str]:
+ """Generate a list of matching metric_desc IDs
+
+ Given a specific run and metric name, and a set of breakout filters,
+ returns a list of metric desc IDs that match.
+
+ If a single ID is required to produce a consistent metric, and the
+ supplied filters produce more than one without aggregation, raise a
+ 422 HTTP error (UNPROCESSABLE CONTENT) with a response body showing
+ the unsatisfied breakouts (name and available values).
+
+ Args:
+ run: run ID
+ metric: combined metric name (e.g., sar-net::packets-sec)
+ namelist: a list of breakout filters like "type=physical"
+ periodlist: a list of period IDs
+ aggregate: if True, allow multiple metric IDs
+
+ Returns:
+ A list of matching metric_desc ID value(s)
+ """
+ filters = self._build_metric_filters(run, metric, namelist, periodlist)
+ metrics = await self.search(
+ "metric_desc",
+ filters=filters,
+ ignore_unavailable=True,
+ )
+ if len(metrics["hits"]["hits"]) < 1:
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST,
+ (
+ f"No matches for {metric}"
+ f"{('+' + ','.join(namelist) if namelist else '')}"
+ ),
+ )
+ ids = [h["metric_desc"]["id"] for h in self._hits(metrics)]
+ if len(ids) < 2 or aggregate:
+ return ids
+
+ # If we get here, the client asked for breakout data that doesn't
+ # resolve to a single metric stream, and didn't specify aggregation.
+ # Offer some help.
+ names = defaultdict(set)
+ periods = set()
+ response = {
+ "message": f"More than one metric ({len(ids)}) means "
+ "you should add breakout filters or aggregate."
+ }
+ for m in self._hits(metrics):
+ if "period" in m:
+ periods.add(m["period"]["id"])
+ for n, v in m["metric_desc"]["names"].items():
+ names[n].add(v)
+
+ # We want to help filter a consistent summary, so only show those
+ # breakout names with more than one value.
+ response["names"] = {n: sorted(v) for n, v in names.items() if v and len(v) > 1}
+ response["periods"] = list(periods)
+ raise HTTPException(
+ status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, detail=response
+ )
+
+ async def _build_timestamp_range_filters(
+ self, periods: Optional[list[str]] = None
+ ) -> list[dict[str, Any]]:
+ """Create a timestamp range filter
+
+ This extracts the begin and end timestamps from the list of periods and
+ builds a timestamp filter range to select documents on or after the
+ earliest begin timestamp and on or before the latest end timestamp.
+
+ Args:
+ periods: a list of CDM period IDs
+
+ Returns:
+ Constructs a range filter for the earliest begin timestamp and the
+ latest end timestamp among the specified periods.
+ """
+ if periods:
+ ps = self._split_list(periods)
+ matches = await self.search(
+ "period", filters=[{"terms": {"period.id": ps}}]
+ )
+ start = None
+ end = None
+ for h in self._hits(matches):
+ p = h["period"]
+ st = p["begin"]
+ et = p["end"]
+
+ # If any period is missing a timestamp, use the run's timestamp
+ # instead to avoid blowing up on a CDM error.
+ if st is None:
+ st = h["run"]["begin"]
+ if et is None:
+ et = h["run"]["end"]
+ if st and (not start or st < start):
+ start = st
+ if et and (not end or et > end):
+ end = et
+ if start is None or end is None:
+ name = (
+ f"{h['run']['benchmark']}:{h['run']['begin']}-"
+ f"{h['iteration']['num']}-{h['sample']['num']}-"
+ f"{p['name']}"
+ )
+ raise HTTPException(
+ status.HTTP_422_UNPROCESSABLE_ENTITY,
+ f"Unable to compute {name!r} time range {start!r} -> {end!r}",
+ )
+ return [
+ {"range": {"metric_data.begin": {"gte": str(start)}}},
+ {"range": {"metric_data.end": {"lte": str(end)}}},
+ ]
+ else:
+ return []
+
+ async def _get_run_ids(
+ self, index: str, filters: Optional[list[dict[str, Any]]] = None
+ ) -> set[str]:
+ """Return a set of run IDs matching a filter
+
+ Documents in the specified index must have "run.id" fields. Returns
+ a set of unique run IDs matched by the filter in the specified index.
+
+ Args:
+ index: root CDM index name
+ filters: a list of OpenSearch filter terms
+
+ Returns:
+ a set of unique run ID values
+ """
+ filtered = await self.search(
+ index, source="run.id", filters=filters, ignore_unavailable=True
+ )
+ print(f"HITS: {filtered['hits']['hits']}")
+ return set([x for x in self._hits(filtered, ["run", "id"])])
+
+ async def get_run_filters(self) -> dict[str, dict[str, list[str]]]:
+ """Return possible tag and filter terms
+
+ Return a description of tag and param filter terms meaningful
+ across all datasets. TODO: we should support date-range and benchmark
+ filtering. Consider supporting all `run` API filtering, which would
+ allow adjusting the filter popups to drop options no longer relevant
+ to a given set.
+
+ {
+ "param": {
+ {"gpus": [4", "8"]}
+ }
+ }
+
+ Returns:
+ A two-level JSON dict; the first level is the namespace (param or
+ tag), the second level key is the param/tag/field name and its value
+ is the set of values defined for that key.
+ """
+ tags = await self.search(
+ "tag",
+ size=0,
+ aggregations={
+ "key": {
+ "terms": {"field": "tag.name", "size": self.BIGQUERY},
+ "aggs": {
+ "values": {"terms": {"field": "tag.val", "size": self.BIGQUERY}}
+ },
+ }
+ },
+ ignore_unavailable=True,
+ )
+ params = await self.search(
+ "param",
+ size=0,
+ aggregations={
+ "key": {
+ "terms": {"field": "param.arg", "size": self.BIGQUERY},
+ "aggs": {
+ "values": {
+ "terms": {"field": "param.val", "size": self.BIGQUERY}
+ }
+ },
+ }
+ },
+ ignore_unavailable=True,
+ )
+ aggs = {
+ k: {"terms": {"field": f"run.{k}", "size": self.BIGQUERY}}
+ for k in self.RUN_FILTERS
+ }
+ runs = await self.search(
+ "run",
+ size=0,
+ aggregations=aggs,
+ )
+ result = defaultdict(lambda: defaultdict(lambda: set()))
+ for p in self._aggs(params, "key"):
+ for v in p["values"]["buckets"]:
+ result["param"][p["key"]].add(v["key"])
+ for t in self._aggs(tags, "key"):
+ for v in t["values"]["buckets"]:
+ result["tag"][t["key"]].add(v["key"])
+ for name in self.RUN_FILTERS:
+ for f in self._aggs(runs, name):
+ result["run"][name].add(f["key"])
+ return {s: {k: list(v) for k, v in keys.items()} for s, keys in result.items()}
+
+ async def get_runs(
+ self,
+ filter: Optional[list[str]] = None,
+ start: Optional[Union[int, str, datetime]] = None,
+ end: Optional[Union[int, str, datetime]] = None,
+ offset: int = 0,
+ sort: Optional[list[str]] = None,
+ size: Optional[int] = None,
+ **kwargs,
+ ) -> dict[str, Any]:
+ """Return matching Crucible runs
+
+ Filtered and sorted list of runs.
+
+ {
+ "sort": [],
+ "startDate": "2024-01-01T05:00:00+00:00",
+ "size": 1,
+ "offset": 0,
+ "results": [
+ {
+ "begin": "1722878906342",
+ "benchmark": "ilab",
+ "email": "A@email",
+ "end": "1722880503544",
+ "id": "4e1d2c3c-b01c-4007-a92d-23a561af2c11",
+ "name": "\"A User\"",
+ "source": "node.example.com//var/lib/crucible/run/ilab--2024-08-05_17:17:13_UTC--4e1d2c3c-b01c-4007-a92d-23a561af2c11",
+ "tags": {
+ "topology": "none"
+ },
+ "iterations": [
+ {
+ "iteration": 1,
+ "primary_metric": "ilab::train-samples-sec",
+ "primary_period": "measurement",
+ "status": "pass",
+ "params": {
+ "cpu-offload-pin-memory": "1",
+ "model": "/home/models/granite-7b-lab/",
+ "data-path": "/home/data/training/knowledge_data.jsonl",
+ "cpu-offload-optimizer": "1",
+ "nnodes": "1",
+ "nproc-per-node": "4",
+ "num-runavg-samples": "2"
+ }
+ }
+ ],
+ "primary_metrics": [
+ "ilab::train-samples-sec"
+ ],
+ "status": "pass",
+ "params": {
+ "cpu-offload-pin-memory": "1",
+ "model": "/home/models/granite-7b-lab/",
+ "data-path": "/home/data/training/knowledge_data.jsonl",
+ "cpu-offload-optimizer": "1",
+ "nnodes": "1",
+ "nproc-per-node": "4",
+ "num-runavg-samples": "2"
+ },
+ "begin_date": "2024-08-05 17:28:26.342000+00:00",
+ "end_date": "2024-08-05 17:55:03.544000+00:00"
+ }
+ ],
+ "count": 1,
+ "total": 15,
+ "next_offset": 1
+ }
+
+ Args:
+ start: Include runs starting at timestamp
+ end: Include runs ending no later than timestamp
+ filter: List of tag/param filter terms (parm:key=value)
+ sort: List of sort terms (column:)
+ size: Include up to runs in output
+ offset: Use size/from pagination instead of search_after
+
+ Returns:
+ JSON object with "results" list and "housekeeping" fields
+ """
+
+ # We need to remove runs which don't match against 'tag' or 'param'
+ # filter terms. The CDM schema doesn't make it possible to do this in
+ # one shot. Instead, we run queries against the param and tag indices
+ # separately, producing a list of run IDs which we'll exclude from the
+ # final collection.
+ #
+ # If there are no matches, we can exit early. (TODO: should this be an
+ # error, or just a success with an empty list?)
+ results = {}
+ filters = []
+ sorters = self._split_list(sort)
+ results["sort"] = sorters
+ sort_terms = self._build_sort_terms(sorters)
+ param_filters, tag_filters, run_filters = self._build_filter_options(filter)
+ if run_filters:
+ filters.extend(run_filters)
+ if start or end:
+ s = None
+ e = None
+ if start:
+ s = self._normalize_date(start)
+ results["startDate"] = datetime.fromtimestamp(
+ s / 1000.0, tz=timezone.utc
+ )
+ if end:
+ e = self._normalize_date(end)
+ results["endDate"] = datetime.fromtimestamp(e / 1000.0, tz=timezone.utc)
+
+ if s and e and s > e:
+ raise HTTPException(
+ status_code=422,
+ detail={
+ "error": "Invalid date format, start_date must be less than end_date"
+ },
+ )
+ cond = {}
+ if s:
+ cond["gte"] = str(s)
+ if e:
+ cond["lte"] = str(e)
+ filters.append({"range": {"run.begin": cond}})
+ if size:
+ results["size"] = size
+ results["offset"] = offset if offset is not None else 0
+
+ # In order to filter by param or tag values, we need to produce a list
+ # of matching RUN IDs from each index. We'll then drop any RUN ID that's
+ # not on both lists.
+ if tag_filters:
+ tagids = await self._get_run_ids("tag", tag_filters)
+ if param_filters:
+ paramids = await self._get_run_ids("param", param_filters)
+
+ # If it's obvious we can't produce any matches at this point, exit.
+ if (tag_filters and len(tagids) == 0) or (param_filters and len(paramids) == 0):
+ results.update({"results": [], "count": 0, "total": 0})
+ return results
+
+ hits = await self.search(
+ "run",
+ size=size,
+ offset=offset,
+ sort=sort_terms,
+ filters=filters,
+ **kwargs,
+ ignore_unavailable=True,
+ )
+ rawiterations = await self.search("iteration", ignore_unavailable=True)
+ rawtags = await self.search("tag", ignore_unavailable=True)
+ rawparams = await self.search("param", ignore_unavailable=True)
+
+ iterations = defaultdict(list)
+ tags = defaultdict(defaultdict)
+ params = defaultdict(defaultdict)
+ run_params = defaultdict(list)
+
+ for i in self._hits(rawiterations):
+ iterations[i["run"]["id"]].append(i["iteration"])
+
+ # Organize tags by run ID
+ for t in self._hits(rawtags):
+ tags[t["run"]["id"]][t["tag"]["name"]] = t["tag"]["val"]
+
+ # Organize params by iteration ID
+ for p in self._hits(rawparams):
+ run_params[p["run"]["id"]].append(p)
+ params[p["iteration"]["id"]][p["param"]["arg"]] = p["param"]["val"]
+
+ runs = {}
+ for h in self._hits(hits):
+ run = h["run"]
+ rid = run["id"]
+
+ # Filter the runs by our tag and param queries
+ if param_filters and rid not in paramids:
+ continue
+
+ if tag_filters and rid not in tagids:
+ continue
+
+ # Collect unique runs: the status is "fail" if any iteration for
+ # that run ID failed.
+ runs[rid] = run
+ run["tags"] = tags.get(rid, {})
+ run["iterations"] = []
+ run["primary_metrics"] = set()
+ common = CommonParams()
+ for i in iterations.get(rid, []):
+ iparams = params.get(i["id"], {})
+ if "status" not in run:
+ run["status"] = i["status"]
+ else:
+ if i["status"] != "pass":
+ run["status"] = i["status"]
+ common.add(iparams)
+ run["primary_metrics"].add(i["primary-metric"])
+ run["iterations"].append(
+ {
+ "iteration": i["num"],
+ "primary_metric": i["primary-metric"],
+ "primary_period": i["primary-period"],
+ "status": i["status"],
+ "params": iparams,
+ }
+ )
+ run["params"] = common.render()
+ try:
+ run["begin_date"] = self._format_timestamp(run["begin"])
+ run["end_date"] = self._format_timestamp(run["end"])
+ except KeyError as e:
+ print(f"Missing 'run' key {str(e)} in {run}")
+ run["begin_date"] = self._format_timestamp("0")
+ run["end_date"] = self._format_timestamp("0")
+
+ count = len(runs)
+ total = hits["hits"]["total"]["value"]
+ results.update(
+ {
+ "results": list(runs.values()),
+ "count": count,
+ "total": total,
+ }
+ )
+ if size and (offset + count < total):
+ results["next_offset"] = offset + size
+ return results
+
+ async def get_tags(self, run: str, **kwargs) -> dict[str, str]:
+ """Return the set of tags associated with a run
+
+ Args:
+ run: run ID
+
+ Returns:
+ JSON dict with "tag" keys showing each value
+ """
+ tags = await self.search(
+ index="tag",
+ filters=[{"term": {"run.id": run}}],
+ **kwargs,
+ ignore_unavailable=True,
+ )
+ return {t["name"]: t["val"] for t in self._hits(tags, ["tag"])}
+
+ async def get_params(
+ self, run: Optional[str] = None, iteration: Optional[str] = None, **kwargs
+ ) -> dict[str, dict[str, str]]:
+ """Return the set of parameters for a run or iteration
+
+ Parameters are technically associated with an iteration, but can be
+ aggregated for a run. This will return a set of parameters for each
+ iteration; plus, if a "run" was specified, a filtered list of param
+ values that are common across all iterations.
+
+ Args:
+ run: run ID
+ iteration: iteration ID
+ kwargs: additional OpenSearch keywords
+
+ Returns:
+ JSON dict of param values by iteration (plus "common" if by run ID)
+ """
+ if not run and not iteration:
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST,
+ "A params query requires either a run or iteration ID",
+ )
+ match = {"run.id" if run else "iteration.id": run if run else iteration}
+ params = await self.search(
+ index="param",
+ filters=[{"term": match}],
+ **kwargs,
+ ignore_unavailable=True,
+ )
+ response = defaultdict(defaultdict)
+ for param in self._hits(params):
+ iter = param["iteration"]["id"]
+ arg = param["param"]["arg"]
+ val = param["param"]["val"]
+ if response.get(iter) and response.get(iter).get(arg):
+ print(f"Duplicate param {arg} for iteration {iter}")
+ response[iter][arg] = val
+
+ # Filter out all parameter values that don't exist in all or which have
+ # different values.
+ if run:
+ common = CommonParams()
+ for params in response.values():
+ common.add(params)
+ response["common"] = common.render()
+ return response
+
+ async def get_iterations(self, run: str, **kwargs) -> list[dict[str, Any]]:
+ """Return a list of iterations for a run
+
+ Args:
+ run: run ID
+ kwargs: additional OpenSearch keywords
+
+ Returns:
+ A list of iteration documents
+ """
+ iterations = await self.search(
+ index="iteration",
+ filters=[{"term": {"run.id": run}}],
+ sort=[{"iteration.num": "asc"}],
+ **kwargs,
+ ignore_unavailable=True,
+ )
+ return [i["iteration"] for i in self._hits(iterations)]
+
+ async def get_samples(
+ self, run: Optional[str] = None, iteration: Optional[str] = None, **kwargs
+ ):
+ """Return a list of samples for a run or iteration
+
+ Args:
+ run: run ID
+ iteration: iteration ID
+ kwargs: additional OpenSearch keywords
+
+ Returns:
+ A list of sample documents.
+ """
+ if not run and not iteration:
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST,
+ "A sample query requires either a run or iteration ID",
+ )
+ match = {"run.id" if run else "iteration.id": run if run else iteration}
+ hits = await self.search(
+ index="sample",
+ filters=[{"term": match}],
+ **kwargs,
+ ignore_unavailable=True,
+ )
+ samples = []
+ for s in self._hits(hits):
+ print(f"SAMPLE's ITERATION {s['iteration']}")
+ sample = s["sample"]
+ sample["iteration"] = s["iteration"]["num"]
+ sample["primary_metric"] = s["iteration"]["primary-metric"]
+ sample["status"] = s["iteration"]["status"]
+ samples.append(sample)
+ return samples
+
+ async def get_periods(
+ self,
+ run: Optional[str] = None,
+ iteration: Optional[str] = None,
+ sample: Optional[str] = None,
+ **kwargs,
+ ):
+ """Return a list of periods associated with a run, an iteration, or a
+ sample
+
+ The "period" document is normalized to represent timestamps using ISO
+ strings.
+
+ Args:
+ run: run ID
+ iteration: iteration ID
+ sample: sample ID
+ kwargs: additional OpenSearch parameters
+
+ Returns:
+ a list of normalized period documents
+ """
+ if not any((run, iteration, sample)):
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST,
+ "A period query requires a run, iteration, or sample ID",
+ )
+ match = None
+ if sample:
+ match = {"sample.id": sample}
+ elif iteration:
+ match = {"iteration.id": iteration}
+ else:
+ match = {"run.id": run}
+ periods = await self.search(
+ index="period",
+ filters=[{"term": match}],
+ sort=[{"period.begin": "asc"}],
+ **kwargs,
+ ignore_unavailable=True,
+ )
+ body = []
+ for h in self._hits(periods):
+ period = self._format_period(period=h["period"])
+ period["iteration"] = h["iteration"]["num"]
+ period["sample"] = h["sample"]["num"]
+ period["primary_metric"] = h["iteration"]["primary-metric"]
+ period["status"] = h["iteration"]["status"]
+ body.append(period)
+ return body
+
+ async def get_timeline(self, run: str, **kwargs) -> dict[str, Any]:
+ """Report the relative timeline of a run
+
+ With nested object lists, show runs to iterations to samples to
+ periods.
+
+ Args:
+ run: run ID
+ kwargs: additional OpenSearch parameters
+ """
+ itr = await self.search(
+ index="iteration",
+ filters=[{"term": {"run.id": run}}],
+ **kwargs,
+ ignore_unavailable=True,
+ )
+ sam = await self.search(
+ index="sample",
+ filters=[{"term": {"run.id": run}}],
+ **kwargs,
+ ignore_unavailable=True,
+ )
+ per = await self.search(
+ index="period",
+ filters=[{"term": {"run.id": run}}],
+ **kwargs,
+ ignore_unavailable=True,
+ )
+ samples = defaultdict(list)
+ periods = defaultdict(list)
+
+ for s in self._hits(sam):
+ samples[s["iteration"]["id"]].append(s)
+ for p in self._hits(per):
+ periods[p["sample"]["id"]].append(p)
+
+ iterations = []
+ robj = {"id": run, "iterations": iterations}
+ body = {"run": robj}
+ for i in self._hits(itr):
+ if "begin" not in robj:
+ robj["begin"] = self._format_timestamp(i["run"]["begin"])
+ robj["end"] = self._format_timestamp(i["run"]["end"])
+ iteration = i["iteration"]
+ iterations.append(iteration)
+ iteration["samples"] = []
+ for s in samples.get(iteration["id"], []):
+ sample = s["sample"]
+ sample["periods"] = []
+ for pr in periods.get(sample["id"], []):
+ period = self._format_period(pr["period"])
+ sample["periods"].append(period)
+ iteration["samples"].append(sample)
+ return body
+
+ async def get_metrics_list(self, run: str, **kwargs) -> dict[str, Any]:
+ """Return a list of metrics available for a run
+
+ Each run may have multiple performance metrics stored. This API allows
+ retrieving a sorted list of the metrics available for a given run, with
+ the "names" selection criteria available for each and, for "periodic"
+ (benchmark) metrics, the defined periods for which data was gathered.
+
+ {
+ "ilab::train-samples-sec": {
+ "periods": [{"id": , "name": "measurement"}],
+ "breakouts": {"benchmark-group" ["unknown"], ...}
+ },
+ "iostat::avg-queue-length": {
+ "periods": [],
+ "breakouts": {"benchmark-group": ["unknown"], ...},
+ },
+ ...
+ }
+
+ Args:
+ run: run ID
+
+ Returns:
+ List of metrics available for the run
+ """
+ hits = await self.search(
+ index="metric_desc",
+ filters=[{"term": {"run.id": run}}],
+ ignore_unavailable=True,
+ **kwargs,
+ )
+ met = {}
+ for h in self._hits(hits):
+ desc = h["metric_desc"]
+ name = desc["source"] + "::" + desc["type"]
+ if name in met:
+ record = met[name]
+ else:
+ record = {"periods": [], "breakouts": defaultdict(set)}
+ met[name] = record
+ if "period" in h:
+ record["periods"].append(h["period"]["id"])
+ for n, v in desc["names"].items():
+ record["breakouts"][n].add(v)
+ return met
+
+ async def get_metric_breakouts(
+ self,
+ run: str,
+ metric: str,
+ names: Optional[list[str]] = None,
+ periods: Optional[list[str]] = None,
+ ) -> dict[str, Any]:
+ """Help explore available metric breakouts
+
+ Args:
+ run: run ID
+ metric: metric label (e.g., "mpstat::Busy-CPU")
+ names: list of name filters ("cpu=3")
+ periods: list of period IDs
+
+ Returns:
+ A description of all breakout names and values, which can be
+ specified to narrow down metrics returns by the data, summary, and
+ graph APIs.
+
+ {
+ "label": "mpstat::Busy-CPU",
+ "class": [
+ "throughput"
+ ],
+ "type": "Busy-CPU",
+ "source": "mpstat",
+ "breakouts": {
+ "num": [
+ "8",
+ "72"
+ ],
+ "thread": [
+ 0,
+ 1
+ ]
+ }
+ }
+ """
+ start = time.time()
+ filters = self._build_metric_filters(run, metric, names, periods)
+ metric_name = metric + ("" if not names else ("+" + ",".join(names)))
+ metrics = await self.search(
+ "metric_desc",
+ filters=filters,
+ ignore_unavailable=True,
+ )
+ if len(metrics["hits"]["hits"]) < 1:
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST,
+ f"Metric name {metric_name} not found for run {run}",
+ )
+ classes = set()
+ response = {"label": metric, "class": classes}
+ breakouts = defaultdict(set)
+ pl = set()
+ for m in self._hits(metrics):
+ desc = m["metric_desc"]
+ response["type"] = desc["type"]
+ response["source"] = desc["source"]
+ if desc.get("class"):
+ classes.add(desc["class"])
+ if "period" in m:
+ pl.add(m["period"]["id"])
+ for n, v in desc["names"].items():
+ breakouts[n].add(v)
+ # We want to help filter a consistent summary, so only show those
+ # names with more than one value.
+ if len(pl) > 1:
+ response["periods"] = pl
+ response["breakouts"] = {n: v for n, v in breakouts.items() if len(v) > 1}
+ duration = time.time() - start
+ print(f"Processing took {duration} seconds")
+ return response
+
+ async def get_metrics_data(
+ self,
+ run: str,
+ metric: str,
+ names: Optional[list[str]] = None,
+ periods: Optional[list[str]] = None,
+ aggregate: bool = False,
+ ) -> list[Any]:
+ """Return a list of metric data
+
+ The "aggregate" option allows aggregating various metrics across
+ breakout streams and periods: be careful, as this is meaningful only if
+ the breakout streams are sufficiently related.
+
+ Args:
+ run: run ID
+ metric: metric label (e.g., "mpstat::Busy-CPU")
+ names: list of name filters ("cpu=3")
+ periods: list of period IDs
+ aggregate: aggregate multiple metric data streams
+
+ Returns:
+ A sequence of data samples, showing the aggregate sample along with
+ the duration and end timestamp of each sample interval.
+
+ [
+ {
+ "begin": "2024-08-22 20:03:23.028000+00:00",
+ "end": "2024-08-22 20:03:37.127000+00:00",
+ "duration": 14.1,
+ "value": 9.35271216694379
+ },
+ {
+ "begin": "2024-08-22 20:03:37.128000+00:00",
+ "end": "2024-08-22 20:03:51.149000+00:00",
+ "duration": 14.022,
+ "value": 9.405932330557683
+ },
+ {
+ "begin": "2024-08-22 20:03:51.150000+00:00",
+ "end": "2024-08-22 20:04:05.071000+00:00",
+ "duration": 13.922,
+ "value": 9.478773265522682
+ }
+ ]
+ """
+ start = time.time()
+ ids = await self._get_metric_ids(
+ run, metric, names, periodlist=periods, aggregate=aggregate
+ )
+
+ # If we're searching by periods, filter metric data by the period
+ # timestamp range rather than just relying on the metric desc IDs as
+ # we also want to filter non-periodic tool data.
+ filters = [{"terms": {"metric_desc.id": ids}}]
+ filters.extend(await self._build_timestamp_range_filters(periods))
+
+ response = []
+ if len(ids) > 1:
+ # Find the minimum sample interval of the selected metrics
+ aggdur = await self.search(
+ "metric_data",
+ size=0,
+ filters=filters,
+ aggregations={"duration": {"stats": {"field": "metric_data.duration"}}},
+ )
+ if aggdur["aggregations"]["duration"]["count"] > 0:
+ interval = int(aggdur["aggregations"]["duration"]["min"])
+ data = await self.search(
+ index="metric_data",
+ size=0,
+ filters=filters,
+ aggregations={
+ "interval": {
+ "histogram": {
+ "field": "metric_data.end",
+ "interval": interval,
+ },
+ "aggs": {"value": {"sum": {"field": "metric_data.value"}}},
+ }
+ },
+ )
+ for h in self._aggs(data, "interval"):
+ response.append(
+ {
+ "begin": self._format_timestamp(h["key"] - interval),
+ "end": self._format_timestamp(h["key"]),
+ "value": h["value"]["value"],
+ "duration": interval / 1000.0,
+ }
+ )
+ else:
+ data = await self.search("metric_data", filters=filters)
+ for h in self._hits(data, ["metric_data"]):
+ response.append(self._format_data(h))
+ response.sort(key=lambda a: a["end"])
+ duration = time.time() - start
+ print(f"Processing took {duration} seconds")
+ return response
+
+ async def get_metrics_summary(
+ self,
+ run: str,
+ metric: str,
+ names: Optional[list[str]] = None,
+ periods: Optional[list[str]] = None,
+ ) -> dict[str, Any]:
+ """Return a statistical summary of metric data
+
+ Provides a statistical summary of selected data samples.
+
+ Args:
+ run: run ID
+ metric: metric label (e.g., "mpstat::Busy-CPU")
+ names: list of name filters ("cpu=3")
+ periods: list of period IDs
+
+ Returns:
+ A statistical summary of the selected metric data
+
+ {
+ "count": 71,
+ "min": 0.0,
+ "max": 0.3296,
+ "avg": 0.02360704225352113,
+ "sum": 1.676self.BIGQUERY00000001
+ }
+ """
+ start = time.time()
+ ids = await self._get_metric_ids(run, metric, names, periodlist=periods)
+ filters = [{"terms": {"metric_desc.id": ids}}]
+ filters.extend(await self._build_timestamp_range_filters(periods))
+ data = await self.search(
+ "metric_data",
+ size=0,
+ filters=filters,
+ aggregations={"score": {"stats": {"field": "metric_data.value"}}},
+ )
+ duration = time.time() - start
+ print(f"Processing took {duration} seconds")
+ return data["aggregations"]["score"]
+
+ async def _graph_title(
+ self,
+ run_id: str,
+ run_id_list: list[str],
+ graph: Graph,
+ params_by_run: dict[str, Any],
+ periods_by_run: dict[str, Any],
+ ) -> str:
+ """Compute a default title for a graph
+
+ Use the period, breakout name selections, run list, and iteration
+ parameters to construct a meaningful name for a graph.
+
+ For example, "ilab::sdg-samples-sec (batch-size=4) {run 1}", or
+ "mpstat::Busy-CPU [cpu=4]"
+
+ Args:
+ run_id: the Crucible run ID
+ run_id_list: ordered list of run IDs in our list of graphs
+ graph: the current Graph object
+ params_by_run: initially empty dict used to cache parameters
+ periods_by_run: initially empty dict used to cache periods
+
+ Returns:
+ A string title
+ """
+ names = graph.names
+ metric = graph.metric
+ if run_id not in params_by_run:
+ # Gather iteration parameters outside the loop for help in
+ # generating useful labels.
+ all_params = await self.search(
+ "param", filters=[{"term": {"run.id": run_id}}]
+ )
+ collector = defaultdict(defaultdict)
+ for h in self._hits(all_params):
+ collector[h["iteration"]["id"]][h["param"]["arg"]] = h["param"]["val"]
+ params_by_run[run_id] = collector
+ else:
+ collector = params_by_run[run_id]
+
+ if run_id not in periods_by_run:
+ periods = await self.search(
+ "period", filters=[{"term": {"run.id": run_id}}]
+ )
+ iteration_periods = defaultdict(set)
+ for p in self._hits(periods):
+ iteration_periods[p["iteration"]["id"]].add(p["period"]["id"])
+ periods_by_run[run_id] = iteration_periods
+ else:
+ iteration_periods = periods_by_run[run_id]
+
+ # We can easily end up with multiple graphs across distinct
+ # periods or iterations, so we want to be able to provide some
+ # labeling to the graphs. We do this by looking for unique
+ # iteration parameters values, since the iteration number and
+ # period name aren't useful by themselves.
+ name_suffix = ""
+ if graph.periods:
+ iteration = None
+ for i, pset in iteration_periods.items():
+ if set(graph.periods) <= pset:
+ iteration = i
+ break
+
+ # If the period(s) we're graphing resolve to a single
+ # iteration in a run with multiple iterations, then we can
+ # try to find a unique title suffix based on distinct param
+ # values for that iteration.
+ if iteration and len(collector) > 1:
+ unique = collector[iteration].copy()
+ for i, params in collector.items():
+ if i != iteration:
+ for p in list(unique.keys()):
+ if p in params and unique[p] == params[p]:
+ del unique[p]
+ if unique:
+ name_suffix = (
+ " (" + ",".join([f"{p}={v}" for p, v in unique.items()]) + ")"
+ )
+
+ if len(run_id_list) > 1:
+ name_suffix += f" {{run {run_id_list.index(run_id) + 1}}}"
+
+ options = (" [" + ",".join(names) + "]") if names else ""
+ return metric + options + name_suffix
+
+ async def get_metrics_graph(self, graphdata: GraphList) -> dict[str, Any]:
+ """Return metrics data for a run
+
+ Each run may have multiple performance metrics stored. This API allows
+ retrieving graphable time-series representation of a metric over the
+ period of the run, in the format defined by Plotly as configuration
+ settings plus an x value array and a y value array.
+
+ {
+ "data": [
+ {
+ "x": [
+ "2024-08-27 09:16:27.371000",
+ ...
+ ],
+ "y": [
+ 10.23444312132161,
+ ...
+ ],
+ "name": "Metric ilab::train-samples-sec",
+ "type": "scatter",
+ "mode": "line",
+ "marker": {"color": "black"},
+ "labels": {"x": "sample timestamp", "y": "samples / second"}
+ }
+ ]
+ "layout": {
+ "width": 1500,
+ "yaxis": {
+ "title": "mpstat::Busy-CPU core=2,package=0,num=112,type=usr",
+ "color": "black"
+ }
+ }
+ }
+
+ Args:
+ graphdata: A GraphList object
+
+ Returns:
+ A Plotly object with layout
+ """
+ start = time.time()
+ graphlist = []
+ default_run_id = graphdata.run
+ layout: dict[str, Any] = {"width": "1500"}
+ axes = {}
+ yaxis = None
+ cindex = 0
+ params_by_run = {}
+ periods_by_run = {}
+
+ # Construct a de-duped ordered list of run IDs, starting with the
+ # default.
+ run_id_list = []
+ if default_run_id:
+ run_id_list.append(default_run_id)
+ run_id_missing = False
+ for g in graphdata.graphs:
+ if g.run:
+ if g.run not in run_id_list:
+ run_id_list.append(g.run)
+ else:
+ run_id_missing = True
+
+ if run_id_missing and not default_run_id:
+ raise HTTPException(
+ status.HTTP_400_BAD_REQUEST, "each graph request must have a run ID"
+ )
+
+ for g in graphdata.graphs:
+ run_id = g.run if g.run else default_run_id
+ names = g.names
+ metric: str = g.metric
+
+ # The caller can provide a title for each graph; but, if not, we
+ # journey down dark overgrown pathways to fabricate a default with
+ # reasonable context, including unique iteration parameters,
+ # breakdown selections, and which run provided the data.
+ if g.title:
+ title = g.title
+ else:
+ title = await self._graph_title(
+ run_id, run_id_list, g, params_by_run, periods_by_run
+ )
+
+ ids = await self._get_metric_ids(
+ run_id,
+ metric,
+ names,
+ periodlist=g.periods,
+ aggregate=g.aggregate,
+ )
+ filters = [{"terms": {"metric_desc.id": ids}}]
+ filters.extend(await self._build_timestamp_range_filters(g.periods))
+ y_max = 0.0
+ points: list[Point] = []
+
+ # If we're pulling multiple breakouts, e.g., total CPU across modes
+ # or cores, we want to aggregate by timestamp interval. Sample
+ # timstamps don't necessarily align, so the "histogram" aggregation
+ # normalizes within the interval (based on the minimum actual
+ # interval duration).
+ if len(ids) > 1:
+ # Find the minimum sample interval of the selected metrics
+ aggdur = await self.search(
+ "metric_data",
+ size=0,
+ filters=filters,
+ aggregations={
+ "duration": {"stats": {"field": "metric_data.duration"}}
+ },
+ )
+ if aggdur["aggregations"]["duration"]["count"] > 0:
+ interval = int(aggdur["aggregations"]["duration"]["min"])
+ data = await self.search(
+ index="metric_data",
+ size=0,
+ filters=filters,
+ aggregations={
+ "interval": {
+ "histogram": {
+ "field": "metric_data.begin",
+ "interval": interval,
+ },
+ "aggs": {
+ "value": {"sum": {"field": "metric_data.value"}}
+ },
+ }
+ },
+ )
+ for h in self._aggs(data, "interval"):
+ begin = int(h["key"])
+ end = begin + interval - 1
+ points.append(Point(begin, end, float(h["value"]["value"])))
+ else:
+ data = await self.search("metric_data", filters=filters)
+ for h in self._hits(data, ["metric_data"]):
+ points.append(
+ Point(int(h["begin"]), int(h["end"]), float(h["value"]))
+ )
+
+ # Sort the graph points by timestamp so that Ploty will draw nice
+ # lines. We graph both the "begin" and "end" timestamp of each
+ # sample against the value to more clearly show the sampling
+ # interval.
+ x = []
+ y = []
+
+ for p in sorted(points, key=lambda a: a.begin):
+ x.extend(
+ [self._format_timestamp(p.begin), self._format_timestamp(p.end)]
+ )
+ y.extend([p.value, p.value])
+ y_max = max(y_max, p.value)
+
+ if g.color:
+ color = g.color
+ else:
+ color = colors[cindex]
+ cindex += 1
+ if cindex >= len(colors):
+ cindex = 0
+ graphitem = {
+ "x": x,
+ "y": y,
+ "name": title,
+ "type": "scatter",
+ "mode": "line",
+ "marker": {"color": color},
+ "labels": {
+ "x": "sample timestamp",
+ "y": "samples / second",
+ },
+ }
+
+ # Y-axis scaling and labeling is divided by benchmark label;
+ # so store each we've created to reuse. (E.g., if we graph
+ # 5 different mpstat::Busy-CPU periods, they'll share a single
+ # Y axis.)
+ if metric in axes:
+ yref = axes[metric]
+ else:
+ if yaxis:
+ name = f"yaxis{yaxis}"
+ yref = f"y{yaxis}"
+ yaxis += 1
+ layout[name] = {
+ "title": metric,
+ "color": color,
+ "autorange": True,
+ "anchor": "free",
+ "autoshift": True,
+ "overlaying": "y",
+ }
+ else:
+ name = "yaxis"
+ yref = "y"
+ yaxis = 2
+ layout[name] = {
+ "title": metric,
+ "color": color,
+ }
+ axes[metric] = yref
+ graphitem["yaxis"] = yref
+ graphlist.append(graphitem)
+ duration = time.time() - start
+ print(f"Processing took {duration} seconds")
+ return {"data": graphlist, "layout": layout}