-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
79 lines (62 loc) · 2.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import time
import torch
import argparse
from tqdm import tqdm
from dataset import CreateDataLoader
from models import create_model
from utils import open_config_file, print_current_errors, mkdirs, mkdir
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default="default.json", metavar='N', help='config file')
args = parser.parse_args()
params = open_config_file(args.config)
params.gpu_ids = [params.gpu_ids]
# set gpu ids
if len(params.gpu_ids) > 0:
torch.cuda.set_device(params.gpu_ids[0])
args = vars(params)
print('------------ Options -------------')
for k, v in sorted(args.items()):
print('%s: %s' % (str(k), str(v)))
print('-------------- End ----------------')
# save to the disk
expr_dir = os.path.join(params.checkpoints_dir, params.name)
mkdir(expr_dir)
file_name = os.path.join(expr_dir, 'params.txt')
with open(file_name, 'wt') as params_file:
params_file.write('------------ Options -------------\n')
for k, v in sorted(args.items()):
params_file.write('%s: %s\n' % (str(k), str(v)))
params_file.write('-------------- End ----------------\n')
###
data_loader = CreateDataLoader(params)
dataset = data_loader.dataset
dataset_size = len(dataset)
print(f'#training images = {dataset_size}')
model = create_model(params)
total_steps = 0
for epoch in range(params.epoch_count, params.niter + params.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
with tqdm(data_loader,
desc=(f'Train - Epoch: {epoch}'),
unit=' imgs',
ncols=80,
unit_scale=params.batchSize) as t:
for i, data in enumerate(t):
iter_start_time = time.time()
total_steps += params.batchSize
epoch_iter += params.batchSize
model.set_input(data)
# combined forward + backward pass
model.optimize_parameters()
if epoch % params.save_epoch_freq == 0:
errors = model.get_current_errors()
t = (time.time() - epoch_start_time)
log_filepath = os.path.join(expr_dir, 'log', 'loss_log.txt')
print_current_errors(epoch, epoch_iter, errors, t, params.save_log, log_filepath)
print(f'\saving the model at the end of epoch {epoch}, iters {total_steps}')
model.save('latest')
model.save(epoch)
print(f'End of epoch {epoch} / {params.niter + params.niter_decay} \t Time Taken: {time.time() - epoch_start_time} sec')
model.update_learning_rate()