-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
404 lines (325 loc) · 14.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os
import sys
import torch
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDict
from torch.autograd import Variable
import itertools
from utils import ImagePool, tensor2im
import networks as networks
class ModelBackbone():
def __init__(self, p):
self.p = p
self.gpu_ids = p.gpu_ids
self.isTrain = p.isTrain
self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor
self.save_dir = os.path.join(p.checkpoints_dir, p.name)
def name(self):
return 'BaseModel'
def set_input(self, input):
self.input = input
# helper saving function that can be used by subclasses
def save_model(self, model, model_label, epoch_label, gpu_ids):
save_filename = f'{epoch_label}_net_{model_label}.pth'
save_path = os.path.join(self.save_dir, save_filename)
torch.save(model.cpu().state_dict(), save_path)
if len(gpu_ids) and torch.cuda.is_available():
model.cuda(gpu_ids[0])
# helper loading function that can be used by subclasses
def load_model(self, model, model_label, epoch_label):
save_filename = f'{epoch_label}_net_{model_label}.pth'
save_path = os.path.join(self.save_dir, save_filename)
model.load_state_dict(torch.load(save_path))
# update learning rate (called once every epoch)
def update_learning_rate(self):
for scheduler in self.schedulers:
scheduler.step()
lr = self.optimizers[0].param_groups[0]['lr']
if (lr <= 0):
print(f'Learning rate = {lr:.7f}')
print('EXITING TRAINING BECAUSE LR IS <0')
sys.exit()
print(f'Learning rate = {lr:.7f}')
class CycleGAN(ModelBackbone):
def __init__(self, p):
super(CycleGAN, self).__init__(p)
nb = p.batchSize
size = p.cropSize
# load/define models
# The naming conversion is different from those used in the paper
# Code (paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X)
self.netG_A = networks.define_G(p.input_nc, p.output_nc, p.ngf, p.which_model_netG, p.norm, not p.no_dropout, p.init_type, self.gpu_ids)
self.netG_B = networks.define_G(p.output_nc, p.input_nc, p.ngf, p.which_model_netG, p.norm, not p.no_dropout, p.init_type, self.gpu_ids)
if self.isTrain:
use_sigmoid = p.no_lsgan
self.netD_A = networks.define_D(p.output_nc, p.ndf, p.which_model_netD, p.n_layers_D, p.norm, use_sigmoid, p.init_type, self.gpu_ids)
self.netD_B = networks.define_D(p.input_nc, p.ndf, p.which_model_netD, p.n_layers_D, p.norm, use_sigmoid, p.init_type, self.gpu_ids)
if not self.isTrain or p.continue_train:
which_epoch = p.which_epoch
self.load_model(self.netG_A, 'G_A', which_epoch)
self.load_model(self.netG_B, 'G_B', which_epoch)
if self.isTrain:
self.load_model(self.netD_A, 'D_A', which_epoch)
self.load_model(self.netD_B, 'D_B', which_epoch)
if self.isTrain:
self.old_lr = p.lr
self.fake_A_pool = ImagePool(p.pool_size)
self.fake_B_pool = ImagePool(p.pool_size)
# define loss functions
self.criterionGAN = networks.GANLoss(use_lsgan=not p.no_lsgan, tensor=self.Tensor)
self.criterionCycle = torch.nn.L1Loss()
self.criterionIdt = torch.nn.L1Loss()
# initialize optimizers
self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=p.lr, betas=(p.beta1, 0.999))
self.optimizer_D_A = torch.optim.Adam(self.netD_A.parameters(), lr=p.lr, betas=(p.beta1, 0.999))
self.optimizer_D_B = torch.optim.Adam(self.netD_B.parameters(), lr=p.lr, betas=(p.beta1, 0.999))
self.optimizers = []
self.schedulers = []
self.optimizers.append(self.optimizer_G)
self.optimizers.append(self.optimizer_D_A)
self.optimizers.append(self.optimizer_D_B)
for optimizer in self.optimizers:
self.schedulers.append(networks.get_scheduler(optimizer, p))
# print('---------- Networks initialized -------------')
# networks.print_network(self.netG_A)
# networks.print_network(self.netG_B)
# if self.isTrain:
# networks.print_network(self.netD_A)
# networks.print_network(self.netD_B)
# print('-----------------------------------------------')
def name(self):
return 'CycleGAN'
def set_input(self, inp):
AtoB = self.p.which_direction == 'AtoB'
input_A = inp['A' if AtoB else 'B']
input_B = inp['B' if AtoB else 'A']
if len(self.gpu_ids) > 0:
input_A = input_A.cuda(self.gpu_ids[0])
input_B = input_B.cuda(self.gpu_ids[0])
self.input_A = input_A
self.input_B = input_B
self.image_paths = inp['A_path' if AtoB else 'B_path']
def forward(self):
self.real_A = Variable(self.input_A)
self.real_B = Variable(self.input_B)
def test(self):
with torch.no_grad():
real_A = Variable(self.input_A)
fake_B = self.netG_A(real_A)
self.rec_A = self.netG_B(fake_B).data
self.fake_B = fake_B.data
real_B = Variable(self.input_B)
fake_A = self.netG_B(real_B)
self.rec_B = self.netG_A(fake_A).data
self.fake_A = fake_A.data
# get image paths
def get_image_paths(self):
return self.image_paths
def backward_D_basic(self, netD, real, fake):
# Real
pred_real = netD(real)
loss_D_real = self.criterionGAN(pred_real, True)
# Fake
pred_fake = netD(fake.detach())
loss_D_fake = self.criterionGAN(pred_fake, False)
# Combined loss
loss_D = (loss_D_real + loss_D_fake) * 0.5
# backward
loss_D.backward()
return loss_D
def backward_D_A(self):
fake_B = self.fake_B_pool.query(self.fake_B)
loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B)
self.loss_D_A = loss_D_A.item()
def backward_D_B(self):
fake_A = self.fake_A_pool.query(self.fake_A)
loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A)
self.loss_D_B = loss_D_B.item()
def backward_G(self):
lambda_idt = self.p.identity
lambda_A = self.p.lambda_A
lambda_B = self.p.lambda_B
# Identity loss
if lambda_idt > 0:
# G_A should be identity if real_B is fed.
idt_A = self.netG_A(self.real_B)
loss_idt_A = self.criterionIdt(idt_A, self.real_B) * lambda_B * lambda_idt
# G_B should be identity if real_A is fed.
idt_B = self.netG_B(self.real_A)
loss_idt_B = self.criterionIdt(idt_B, self.real_A) * lambda_A * lambda_idt
self.idt_A = idt_A.data
self.idt_B = idt_B.data
self.loss_idt_A = loss_idt_A.item()
self.loss_idt_B = loss_idt_B.item()
else:
loss_idt_A = 0
loss_idt_B = 0
self.loss_idt_A = 0
self.loss_idt_B = 0
# GAN loss D_A(G_A(A))
fake_B = self.netG_A(self.real_A)
pred_fake = self.netD_A(fake_B)
loss_G_A = self.criterionGAN(pred_fake, True)
# GAN loss D_B(G_B(B))
fake_A = self.netG_B(self.real_B)
pred_fake = self.netD_B(fake_A)
loss_G_B = self.criterionGAN(pred_fake, True)
# Forward cycle loss
rec_A = self.netG_B(fake_B)
loss_cycle_A = self.criterionCycle(rec_A, self.real_A) * lambda_A
# print("loss_cycle_A ",loss_cycle_A.grad)
# Backward cycle loss
rec_B = self.netG_A(fake_A)
loss_cycle_B = self.criterionCycle(rec_B, self.real_B) * lambda_B
# combined loss
loss_G = loss_G_A + loss_G_B + loss_cycle_A + loss_cycle_B + loss_idt_A + loss_idt_B
loss_G.backward()
self.fake_B = fake_B.data
self.fake_A = fake_A.data
self.rec_A = rec_A.data
self.rec_B = rec_B.data
self.loss_G_A = loss_G_A.item()
self.loss_G_B = loss_G_B.item()
self.loss_cycle_A = loss_cycle_A.item()
self.loss_cycle_B = loss_cycle_B.item()
# def get_gradient(self, img):
# # print("get_gradient ",img)
# # return np.gradient(np.array(img))
# return np.gradient(img)
def optimize_parameters(self):
# forward
self.forward()
# G_A and G_B
self.optimizer_G.zero_grad()
self.backward_G()
self.optimizer_G.step()
# D_A
self.optimizer_D_A.zero_grad()
self.backward_D_A()
self.optimizer_D_A.step()
# D_B
self.optimizer_D_B.zero_grad()
self.backward_D_B()
self.optimizer_D_B.step()
def get_current_errors(self):
ret_errors = OrderedDict([('D_A', self.loss_D_A), ('G_A', self.loss_G_A), ('Cyc_A', self.loss_cycle_A),
('D_B', self.loss_D_B), ('G_B', self.loss_G_B), ('Cyc_B', self.loss_cycle_B)])
if self.p.identity > 0.0:
ret_errors['idt_A'] = self.loss_idt_A
ret_errors['idt_B'] = self.loss_idt_B
return ret_errors
def get_current_visuals(self):
real_A = tensor2im(self.input_A)
fake_B = tensor2im(self.fake_B)
rec_A = tensor2im(self.rec_A)
real_B = tensor2im(self.input_B)
fake_A = tensor2im(self.fake_A)
rec_B = tensor2im(self.rec_B)
ret_visuals = OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('rec_A', rec_A),
('real_B', real_B), ('fake_A', fake_A), ('rec_B', rec_B)])
if self.isTrain and self.p.identity > 0.0:
ret_visuals['idt_A'] = tensor2im(self.idt_A)
ret_visuals['idt_B'] = tensor2im(self.idt_B)
return ret_visuals
def save(self, label):
self.save_model(self.netG_A, 'G_A', label, self.gpu_ids)
self.save_model(self.netD_A, 'D_A', label, self.gpu_ids)
self.save_model(self.netG_B, 'G_B', label, self.gpu_ids)
self.save_model(self.netD_B, 'D_B', label, self.gpu_ids)
class TestModel(ModelBackbone):
def __init__(self, p):
super(TestModel, self).__init__(p)
assert(not p.isTrain)
self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.which_model_netG, opt.norm, not opt.no_dropout, opt.init_type, self.gpu_ids)
which_epoch = p.which_epoch
self.load_model(self.netG, 'G', which_epoch)
print('---------- Networks initialized -------------')
networks.print_network(self.netG)
print('-----------------------------------------------')
def name(self):
return 'TestModel'
def set_input(self, inp):
# we need to use single_dataset mode
input_A = inp['A']
if len(self.gpu_ids) > 0:
input_A = input_A.cuda(self.gpu_ids[0])
self.input_A = input_A
self.image_paths = inp['A_path']
def test(self):
self.real_A = Variable(self.input_A)
self.fake_B = self.netG(self.real_A)
# get image paths
def get_image_paths(self):
return self.image_paths
def get_current_visuals(self):
real_A = tensor2im(self.real_A.data)
fake_B = tensor2im(self.fake_B.data)
return OrderedDict([('real_A', real_A), ('fake_B', fake_B)])
class CycleGAN_inference(ModelBackbone):
def __init__(self, p, ):
super(CycleGAN_inference, self).__init__(p)
size = p.cropSize
self.netG_A = networks.define_G(p.input_nc, p.output_nc, p.ngf, p.which_model_netG, p.norm, not p.no_dropout, p.init_type, self.gpu_ids)
self.netG_B = networks.define_G(p.output_nc, p.input_nc, p.ngf, p.which_model_netG, p.norm, not p.no_dropout, p.init_type, self.gpu_ids)
def load_model(model, checkpoint_path):
model.load_state_dict(torch.load(checkpoint_path))
which_epoch = p.which_epoch
G_A_checkpoint_path = os.path.join(p.checkpoints_dir, p.name, f'{which_epoch}_net_G_A.pth')
G_B_checkpoint_path = os.path.join(p.checkpoints_dir, p.name, f'{which_epoch}_net_G_B.pth')
load_model(self.netG_A, G_A_checkpoint_path)
load_model(self.netG_B, G_B_checkpoint_path)
def name(self):
return 'CycleGAN_inference'
def set_input(self, inp):
AtoB = self.p.which_direction == 'AtoB'
input_A = inp['A' if AtoB else 'B']
input_B = inp['B' if AtoB else 'A']
if len(self.gpu_ids) > 0:
input_A = input_A.cuda(self.gpu_ids[0])
input_B = input_B.cuda(self.gpu_ids[0])
self.input_A = input_A
self.input_B = input_B
self.image_paths = inp['A_path' if AtoB else 'B_path']
def test(self):
with torch.no_grad():
real_A = Variable(self.input_A)
fake_B = self.netG_A(real_A)
self.rec_A = self.netG_B(fake_B).data
self.fake_B = fake_B.data
real_B = Variable(self.input_B)
fake_A = self.netG_B(real_B)
self.rec_B = self.netG_A(fake_A).data
self.fake_A = fake_A.data
# get image paths
def get_image_paths(self):
return self.image_paths
def get_current_visuals(self):
real_A = tensor2im(self.input_A)
fake_B = tensor2im(self.fake_B)
rec_A = tensor2im(self.rec_A)
real_B = tensor2im(self.input_B)
fake_A = tensor2im(self.fake_A)
rec_B = tensor2im(self.rec_B)
ret_visuals = OrderedDict([('real_A', real_A), ('fake_B', fake_B), ('rec_A', rec_A),
('real_B', real_B), ('fake_A', fake_A), ('rec_B', rec_B)])
if self.isTrain and self.p.identity > 0.0:
ret_visuals['idt_A'] = tensor2im(self.idt_A)
ret_visuals['idt_B'] = tensor2im(self.idt_B)
return ret_visuals
def create_model(p):
model = None
print(p.model)
if p.model == 'cycle_gan':
assert(p.dataset_mode == 'unaligned')
if p.phase == 'inference':
model = CycleGAN_inference(p)
else:
model = CycleGAN(p)
elif p.model == 'test':
assert(p.dataset_mode == 'single')
model = TestModel(p)
else:
raise ValueError(f'Model {p.model} not recognized')
print(f'model {model.name()} was created')
return model