-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
287 lines (218 loc) · 8.73 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import random
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def make_dataset(data_dir, shuffle=False):
images = []
assert os.path.isdir(data_dir), f'{data_dir} is not a valid directory'
for root, _, fnames in sorted(os.walk(data_dir)):
for fname in fnames:
if is_image_file(fname):
path = os.path.join(root, fname)
images.append(path)
if shuffle:
random.shuffle(images)
return images
def default_image_loader(path):
return Image.open(path).convert('RGB')
def get_transform(p):
transform_list = []
if p.resize_or_crop == 'resize_and_crop':
osize = [p.loadSize, p.loadSize]
transform_list.append(transforms.Resize(osize, Image.BICUBIC))
transform_list.append(transforms.RandomCrop(p.cropSize))
elif p.resize_or_crop == 'crop':
transform_list.append(transforms.RandomCrop(p.cropSize))
elif p.resize_or_crop == 'scale_width':
transform_list.append(transforms.Lambda(
lambda img: __scale_width(img, p.cropSize)))
elif p.resize_or_crop == 'scale_width_and_crop':
transform_list.append(transforms.Lambda(
lambda img: __scale_width(img, p.loadSize)))
transform_list.append(transforms.RandomCrop(p.cropSize))
if p.isTrain and not p.no_flip:
transform_list.append(transforms.RandomHorizontalFlip())
transform_list += [transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def __scale_width(img, target_width):
ow, oh = img.size
if (ow == target_width):
return img
w = target_width
h = int(target_width * oh / ow)
return img.resize((w, h), Image.BICUBIC)
def CreateDataset(p):
dataset = None
if p.dataset_mode == 'aligned':
dataset = AlignedDataset(p)
elif p.dataset_mode == 'unaligned':
dataset = UnalignedDataset(p)
elif p.dataset_mode == 'single':
dataset = SingleDataset(p)
else:
raise ValueError(f'dataset {p.dataset_mode} not recognized.')
print(f'dataset {dataset.name()} was created')
return dataset
def CreateDataLoader(p):
data_loader = CustomDatasetDataLoader(p)
print(data_loader.name())
return data_loader
class ImageFolder(data.Dataset):
def __init__(self, root, transform=None, return_paths=False, img_loader=default_image_loader):
super(ImageFolder, self).__init__()
imgs = make_dataset(root)
if len(imgs) == 0:
raise(RuntimeError(f'Found 0 images in: {root}\n Supported image extensions are: {",".join(IMG_EXTENSIONS)}'))
self.root = root
self.imgs = imgs
self.transform = transform
self.return_paths = return_paths
self.img_loader = img_loader
def __getitem__(self, index):
path = self.imgs[index]
img = self.img_loader(path)
if self.transform is not None:
img = self.transform(img)
if self.return_paths:
return img, path
else:
return img
def __len__(self):
return len(self.imgs)
class SingleDataset(data.Dataset):
def __init__(self, p):
super(SingleDataset, self).__init__()
self.p = p
self.root = p.dataroot
self.transform = get_transform(p)
self.dir_A = os.path.join(p.dataroot)
self.A_paths = make_dataset(self.dir_A)
# self.A_paths = sorted(self.A_paths)
def __getitem__(self, index):
A_path = self.A_paths[index]
A_img = Image.open(A_path).convert('RGB')
A = self.transform(A_img)
if self.p.which_direction == 'BtoA':
input_nc = self.p.output_nc
else:
input_nc = self.p.input_nc
if input_nc == 1: # RGB to gray
tmp = A[0, ...] * 0.299 + A[1, ...] * 0.587 + A[2, ...] * 0.114
A = tmp.unsqueeze(0)
return {'A': A, 'A_path': A_path}
def __len__(self):
return len(self.A_paths)
def name(self):
return 'SingleImageDataset'
class UnalignedDataset(data.Dataset):
def __init__(self, p):
super(UnalignedDataset, self).__init__()
self.p = p
self.root = p.dataroot
self.dir_A = os.path.join(p.dataroot, p.phase + 'A')
self.dir_B = os.path.join(p.dataroot, p.phase + 'B')
self.A_paths = make_dataset(self.dir_A, shuffle=p.shuffle)
self.B_paths = make_dataset(self.dir_B, shuffle=p.shuffle)
# self.A_paths = sorted(self.A_paths)
# self.B_paths = sorted(self.B_paths)
self.A_size = len(self.A_paths)
self.B_size = len(self.B_paths)
self.transform = get_transform(p)
def __getitem__(self, index):
A_path = self.A_paths[index % self.A_size]
index_A = index % self.A_size
if self.p.serial_batches:
index_B = index % self.B_size
else:
index_B = random.randint(0, self.B_size - 1)
B_path = self.B_paths[index_B]
A_img = Image.open(A_path).convert('RGB')
B_img = Image.open(B_path).convert('RGB')
A = self.transform(A_img)
B = self.transform(B_img)
if self.p.which_direction == 'BtoA':
input_nc = self.p.output_nc
output_nc = self.p.input_nc
else:
input_nc = self.p.input_nc
output_nc = self.p.output_nc
if input_nc == 1: # RGB to gray
tmp = A[0, ...] * 0.299 + A[1, ...] * 0.587 + A[2, ...] * 0.114
A = tmp.unsqueeze(0)
if output_nc == 1: # RGB to gray
tmp = B[0, ...] * 0.299 + B[1, ...] * 0.587 + B[2, ...] * 0.114
B = tmp.unsqueeze(0)
return {'A': A, 'B': B,
'A_path': A_path, 'B_path': B_path}
def __len__(self):
return min(max(self.A_size, self.B_size), self.p.max_dataset_size)
def name(self):
return 'UnalignedDataset'
class AlignedDataset(data.Dataset):
def __init__(self, p):
super(AlignedDataset, self).__init__()
self.p = p
self.root = p.dataroot
self.dir_AB = os.path.join(p.dataroot, p.phase)
self.AB_paths = sorted(make_dataset(self.dir_AB))
assert(p.resize_or_crop == 'resize_and_crop')
def __getitem__(self, index):
AB_path = self.AB_paths[index]
AB = Image.open(AB_path).convert('RGB')
AB = AB.resize((self.opt.loadSize * 2, self.opt.loadSize), Image.BICUBIC)
AB = transforms.ToTensor()(AB)
w_total = AB.size(2)
w = int(w_total / 2)
h = AB.size(1)
w_offset = random.randint(0, max(0, w - self.p.cropSize - 1))
h_offset = random.randint(0, max(0, h - self.p.cropSize - 1))
A = AB[:, h_offset:h_offset + self.p.cropSize,
w_offset:w_offset + self.p.cropSize]
B = AB[:, h_offset:h_offset + self.p.cropSize,
w + w_offset:w + w_offset + self.p.cropSize]
A = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(A)
B = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))(B)
if self.p.which_direction == 'BtoA':
input_nc = self.p.output_nc
output_nc = self.p.input_nc
else:
input_nc = self.p.input_nc
output_nc = self.p.output_nc
if (not self.p.no_flip) and random.random() < 0.5:
idx = [i for i in range(A.size(2) - 1, -1, -1)]
idx = torch.LongTensor(idx)
A = A.index_select(2, idx)
B = B.index_select(2, idx)
if input_nc == 1: # RGB to gray
tmp = A[0, ...] * 0.299 + A[1, ...] * 0.587 + A[2, ...] * 0.114
A = tmp.unsqueeze(0)
if output_nc == 1: # RGB to gray
tmp = B[0, ...] * 0.299 + B[1, ...] * 0.587 + B[2, ...] * 0.114
B = tmp.unsqueeze(0)
return {'A': A, 'B': B,
'A_path': AB_path, 'B_path': AB_path}
def __len__(self):
return len(self.AB_paths)
def name(self):
return 'AlignedDataset'
class CustomDatasetDataLoader(data.DataLoader):
def __init__(self, p):
self.p = p
self.dataset = CreateDataset(p)
super(CustomDatasetDataLoader, self).__init__(
self.dataset,
batch_size=p.batchSize,
shuffle=not p.serial_batches,
num_workers=int(p.nThreads))
def name(self):
return 'CustomDatasetDataLoader'