-
Notifications
You must be signed in to change notification settings - Fork 515
/
Copy pathdemo_video_smooth.py
executable file
·158 lines (123 loc) · 5.56 KB
/
demo_video_smooth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding: utf-8
__author__ = 'cleardusk'
import argparse
import imageio
import numpy as np
from tqdm import tqdm
import yaml
from collections import deque
from FaceBoxes import FaceBoxes
from TDDFA import TDDFA
from utils.render import render
# from utils.render_ctypes import render
from utils.functions import cv_draw_landmark, get_suffix
def main(args):
cfg = yaml.load(open(args.config), Loader=yaml.SafeLoader)
# Init FaceBoxes and TDDFA, recommend using onnx flag
if args.onnx:
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ['OMP_NUM_THREADS'] = '4'
from FaceBoxes.FaceBoxes_ONNX import FaceBoxes_ONNX
from TDDFA_ONNX import TDDFA_ONNX
face_boxes = FaceBoxes_ONNX()
tddfa = TDDFA_ONNX(**cfg)
else:
gpu_mode = args.mode == 'gpu'
tddfa = TDDFA(gpu_mode=gpu_mode, **cfg)
face_boxes = FaceBoxes()
# Given a video path
fn = args.video_fp.split('/')[-1]
reader = imageio.get_reader(args.video_fp)
fps = reader.get_meta_data()['fps']
suffix = get_suffix(args.video_fp)
video_wfp = f'examples/results/videos/{fn.replace(suffix, "")}_{args.opt}_smooth.mp4'
writer = imageio.get_writer(video_wfp, fps=fps)
# the simple implementation of average smoothing by looking ahead by n_next frames
# assert the frames of the video >= n
n_pre, n_next = args.n_pre, args.n_next
n = n_pre + n_next + 1
queue_ver = deque()
queue_frame = deque()
# run
dense_flag = args.opt in ('2d_dense', '3d',)
pre_ver = None
for i, frame in tqdm(enumerate(reader)):
if args.start > 0 and i < args.start:
continue
if args.end > 0 and i > args.end:
break
frame_bgr = frame[..., ::-1] # RGB->BGR
if i == 0:
# detect
boxes = face_boxes(frame_bgr)
boxes = [boxes[0]]
param_lst, roi_box_lst = tddfa(frame_bgr, boxes)
ver = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)[0]
# refine
param_lst, roi_box_lst = tddfa(frame_bgr, [ver], crop_policy='landmark')
ver = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)[0]
# padding queue
for _ in range(n_pre):
queue_ver.append(ver.copy())
queue_ver.append(ver.copy())
for _ in range(n_pre):
queue_frame.append(frame_bgr.copy())
queue_frame.append(frame_bgr.copy())
else:
param_lst, roi_box_lst = tddfa(frame_bgr, [pre_ver], crop_policy='landmark')
roi_box = roi_box_lst[0]
# todo: add confidence threshold to judge the tracking is failed
if abs(roi_box[2] - roi_box[0]) * abs(roi_box[3] - roi_box[1]) < 2020:
boxes = face_boxes(frame_bgr)
boxes = [boxes[0]]
param_lst, roi_box_lst = tddfa(frame_bgr, boxes)
ver = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)[0]
queue_ver.append(ver.copy())
queue_frame.append(frame_bgr.copy())
pre_ver = ver # for tracking
# smoothing: enqueue and dequeue ops
if len(queue_ver) >= n:
ver_ave = np.mean(queue_ver, axis=0)
if args.opt == '2d_sparse':
img_draw = cv_draw_landmark(queue_frame[n_pre], ver_ave) # since we use padding
elif args.opt == '2d_dense':
img_draw = cv_draw_landmark(queue_frame[n_pre], ver_ave, size=1)
elif args.opt == '3d':
img_draw = render(queue_frame[n_pre], [ver_ave], tddfa.tri, alpha=0.7)
else:
raise ValueError(f'Unknown opt {args.opt}')
writer.append_data(img_draw[:, :, ::-1]) # BGR->RGB
queue_ver.popleft()
queue_frame.popleft()
# we will lost the last n_next frames, still padding
for _ in range(n_next):
queue_ver.append(ver.copy())
queue_frame.append(frame_bgr.copy()) # the last frame
ver_ave = np.mean(queue_ver, axis=0)
if args.opt == '2d_sparse':
img_draw = cv_draw_landmark(queue_frame[n_pre], ver_ave) # since we use padding
elif args.opt == '2d_dense':
img_draw = cv_draw_landmark(queue_frame[n_pre], ver_ave, size=1)
elif args.opt == '3d':
img_draw = render(queue_frame[n_pre], [ver_ave], tddfa.tri, alpha=0.7)
else:
raise ValueError(f'Unknown opt {args.opt}')
writer.append_data(img_draw[..., ::-1]) # BGR->RGB
queue_ver.popleft()
queue_frame.popleft()
writer.close()
print(f'Dump to {video_wfp}')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='The smooth demo of video of 3DDFA_V2')
parser.add_argument('-c', '--config', type=str, default='configs/mb1_120x120.yml')
parser.add_argument('-f', '--video_fp', type=str)
parser.add_argument('-m', '--mode', default='cpu', type=str, help='gpu or cpu mode')
parser.add_argument('-n_pre', default=1, type=int, help='the pre frames of smoothing')
parser.add_argument('-n_next', default=1, type=int, help='the next frames of smoothing')
parser.add_argument('-o', '--opt', type=str, default='2d_sparse', choices=['2d_sparse', '2d_dense', '3d'])
parser.add_argument('-s', '--start', default=-1, type=int, help='the started frames')
parser.add_argument('-e', '--end', default=-1, type=int, help='the end frame')
parser.add_argument('--onnx', action='store_true', default=False)
args = parser.parse_args()
main(args)