diff --git a/cleanlab_studio/studio/studio.py b/cleanlab_studio/studio/studio.py index 6ef15ea6..ca5ecf35 100644 --- a/cleanlab_studio/studio/studio.py +++ b/cleanlab_studio/studio/studio.py @@ -13,7 +13,11 @@ from . import clean, upload from cleanlab_studio.internal.api import api -from cleanlab_studio.internal.util import init_dataset_source, check_none, check_not_none +from cleanlab_studio.internal.util import ( + init_dataset_source, + check_none, + check_not_none, +) from cleanlab_studio.internal.settings import CleanlabSettings from cleanlab_studio.internal.types import FieldSchemaDict @@ -151,16 +155,18 @@ def create_project( """ Creates a Cleanlab Studio project - :param dataset_id: ID of dataset to create project for - :param project_name: name for resulting project - :param modality: modality of project (i.e. text, tabular, image) - :keyword task_type: type of classification to perform (i.e. multi-class, multi-label) - :keyword model_type: type of model to train (i.e. fast, regular) - :keyword label_column: name of column in dataset containing labels (if not supplied, we'll make our best guess) - :keyword feature_columns: list of columns to use as features when training tabular modality project (if not supplied and modality is "tabular" we'll use all valid feature columns) - :keyword text_column: name of column containing the text to train text modality project on (if not supplied and modality is "text" we'll make our best guess) - - :return: ID of project + Args: + dataset_id: ID of dataset to create project for + project_name: name for resulting project + modality: modality of project (i.e. text, tabular, image) + task_type: type of classification to perform (i.e. multi-class, multi-label) + model_type: type of model to train (i.e. fast, regular) + label_column: name of column in dataset containing labels (if not supplied, we'll make our best guess) + feature_columns: list of columns to use as features when training tabular modality project (if not supplied and modality is "tabular" we'll use all valid feature columns) + text_column: name of column containing the text to train text modality project on (if not supplied and modality is "text" we'll make our best guess) + + Returns: + ID of project """ dataset_details = api.get_dataset_details(self._api_key, dataset_id) @@ -210,7 +216,8 @@ def poll_cleanset_status(self, cleanset_id: str, timeout: Optional[int] = None) """ Polls for cleanset status. Blocks until cleanset is ready, there is a cleanset error, or `timeout` is exceeded - :return: True if cleanset is ready, False otherwise + Returns: + `True` if cleanset is ready, `False` otherwise """ return clean.poll_cleanset_status(self._api_key, cleanset_id, timeout)