-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinitial.py
63 lines (44 loc) · 1.73 KB
/
initial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import sys
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
# Define the parameters for the problem
N = int(sys.argv[1]) # Number of bodies
X_MIN = -100 # Coordinate boundaries for the initial positions of the bodies
X_MAX = 100
Y_MIN = -100
Y_MAX = 100
Z_MIN = -100
Z_MAX = 100
X, Y, Z, VX, VY, VZ, MASS = range(7)
def figure_eight():
if N != 3:
raise ValueError('N must be 3 for figure eight')
bodies = np.zeros((N, 7))
bodies[0, :] = -0.97000436, 0.24308753, 0, -0.93240737/2, -0.86473146/2, 0, 1
bodies[1, :] = 0.97000436, -0.24308753, 0, -0.93240737/2, -0.86473146/2, 0, 1
bodies[2, :] = 0, 0, 0, 0.93240737, 0.86473146, 0, 1
bodies = pd.DataFrame(bodies)
bodies.columns = 'x', 'y', 'z', 'vx', 'vy', 'vz', 'mass'
bodies.to_csv('products/init.csv', index=False)
# For now, this just randomly places the bodies in space.
def main():
bodies = np.zeros((N, 7))
bodies[:, X] = np.random.uniform(X_MIN, X_MAX, size=N)
bodies[:, Y] = np.random.uniform(Y_MIN, Y_MAX, size=N)
bodies[:, Z] = np.random.uniform(Z_MIN, Z_MAX, size=N)
# Give small initial velocities to break symmetry
# bodies[:, VX] = np.random.uniform(-1, 1, size=N)
# bodies[:, VY] = np.random.uniform(-1, 1, size=N)
# bodies[:, VZ] = np.random.uniform(-1, 1, size=N)
# Rotation
bodies[:, VX] = bodies[:, Y] / Y_MAX * 10
bodies[:, VY] = -bodies[:, X] / X_MAX * 10
bodies[:, VZ] = bodies[:, Y] / Y_MAX * 10
bodies[:, MASS] = np.random.uniform(0.1, 20, size=N)
bodies = pd.DataFrame(bodies)
bodies.columns = 'x', 'y', 'z', 'vx', 'vy', 'vz', 'mass'
bodies.to_csv('products/init.csv', index=False)
if __name__ == '__main__':
# figure_eight()
main()