-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_analysis.R
54 lines (40 loc) · 1.48 KB
/
run_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# run_analysis.R
# Data Labels
activity_labels = read.table("UCI HAR Dataset/activity_labels.txt")
activity_labels = as.vector(activity_labels$V2)
activity_labels = tolower(gsub("\\(|\\)|-|\\,","",activity_labels))
features = read.table("UCI HAR Dataset/features.txt")
features = as.vector(features$V2)
features = tolower(gsub("\\(|\\)|-|\\,","",features))
# Subject Vectors
subject_train = read.table("UCI HAR Dataset/train/subject_train.txt")
subject_train = as.vector(subject_train$V1)
subject_test = read.table("UCI HAR Dataset/test/subject_test.txt")
subject_test = as.vector(subject_test$V1)
# Data Sets
X_train = read.table("UCI HAR Dataset/train/X_train.txt", col.names = features)
Y_train = read.table("UCI HAR Dataset/train/Y_train.txt")
X_test = read.table("UCI HAR Dataset/test/X_test.txt", col.names = features)
Y_test = read.table("UCI HAR Dataset/test/Y_test.txt")
X_train$subject = subject_train
X_train$Y = Y_train$V1
rm(Y_train)
rm(subject_train)
X_test$subject = subject_test
X_test$Y = Y_test$V1
rm(Y_test)
rm(subject_test)
X = rbind(X_train,X_test)
## Part One
X_ave_std = X[,grep("mean|std",features)]
write.table(X_ave_std, "part1_output.txt", sep="\t")
write.table(head(X_ave_std,n=100), "part1_output_head.txt", sep="\t")
## Part Two
require(data.table)
Y = split(X[,1:561],X$subject)
X_mean_calc = data.frame()
for (i in 1:length(Y)){
X_mean_calc = rbind(X_mean_calc,lapply(Y[[i]],mean))
}
row.names(X_mean_calc) = 1:30
write.table(X_mean_calc, "part2_output.txt", sep="\t")