-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ade.py
executable file
·283 lines (243 loc) · 12.2 KB
/
train_ade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import argparse
import random
import collections
import numpy as np
import torch
import torch.nn as nn
import torch.utils.data
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.utils.data.distributed import DistributedSampler
import models.model as module_arch
import utils.metric as module_metric
import utils.lr_scheduler as module_lr_scheduler
import data_loader.data_loaders as module_data
from trainer.trainer_ade import Trainer_base, Trainer_incremental
from utils.parse_config import ConfigParser
from logger.logger import Logger
from utils.memory import memory_sampling_balanced, generation_sampling
torch.backends.cudnn.benchmark = True
def main(config):
ngpus_per_node = torch.cuda.device_count()
if config['multiprocessing_distributed']:
# Single node, mutliple GPUs
config.config['world_size'] = ngpus_per_node * config['world_size']
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, config))
else:
# Rather using distributed, use DataParallel
main_worker(None, ngpus_per_node, config)
def main_worker(gpu, ngpus_per_node, config):
if config['multiprocessing_distributed']:
config.config['rank'] = config['rank'] * ngpus_per_node + gpu
dist.init_process_group(
backend=config['dist_backend'], init_method=config['dist_url'],
world_size=config['world_size'], rank=config['rank']
)
# Set looging
rank = dist.get_rank()
logger = Logger(config.log_dir, rank=rank)
logger.set_logger(f'train(rank{rank})', verbosity=2)
# fix random seeds for reproduce
SEED = config['seed']
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.cuda.manual_seed_all(SEED)
np.random.seed(SEED)
random.seed(SEED)
# Task information
task_step = config['data_loader']['args']['task']['step']
task_name = config['data_loader']['args']['task']['name']
task_setting = config['data_loader']['args']['task']['setting']
# Create Dataloader
dataset = config.init_obj('data_loader', module_data)
# Create old Model
if task_step > 0:
model_old = config.init_obj('arch', module_arch, **{"classes": dataset.get_per_task_classes(task_step - 1)})
if config['multiprocessing_distributed'] and (config['arch']['args']['norm_act'] == 'bn_sync'):
model_old = nn.SyncBatchNorm.convert_sync_batchnorm(model_old)
else:
model_old = None
# Memory pre-processing
if (task_step > 0) and (config['data_loader']['args']['memory']['mem_size'] > 0):
memory_size = config['data_loader']['args']['memory']['mem_size']
assert memory_size >= 300, "Memory size should be greater than 300 in ADE"
if config['replay']['MaskGuide']['use_MaskGuide'] or config['replay']['TokenGuide']['use_TokenGuide']:
print('maskguide', config['replay']['MaskGuide']['use_MaskGuide'])
print('tokenguide', config['replay']['TokenGuide']['use_TokenGuide'])
generation_sampling(
config,
model_old,
dataset.get_old_train_loader(),
('ade', task_setting, task_name, task_step),
logger, gpu,
)
if config['replay']['MaskGuide']['use_MaskGuide']:
json_file_augX = []# json_file_augX
if config['replay']['MaskGuide']['Replace']['use_Replace']:
if config['replay']['MaskGuide']['Replace']['times']>1:
for time in range(config['replay']['MaskGuide']['Replace']['times']):
json_file_augX.append(f'MaskGuide_{memory_size}_{time}X.json')
elif config['replay']['MaskGuide']['Replace']['times'] == 1:
json_file_augX = f'MaskGuide_{memory_size}.json'
else:
raise NotImplementedError
aug_ratio = config['replay']['MaskGuide']['Replace']['aug_ratio']
elif config['replay']['MaskGuide']['Combine']['use_Combine']:
for time in range(config['replay']['MaskGuide']['Combine']['times']):
json_file_augX.append(f'MaskGuide_{memory_size}_{time}X.json')
aug_ratio = 1 # we will have a memory (ratio = 0) below + [augX] (ratio = 1)
else:
raise NotImplementedError
json_file_name = f'memory_{memory_size}.json'# json_file for memory
dataset.get_memory(config, json_file_name, json_file_augX, aug_ratio, concat=True)
elif config['replay']['TokenGuide']['use_TokenGuide']:
json_file_aug = f'TokenGuide_{memory_size}.json'
json_file_name = f'memory_{memory_size}.json'
aug_ratio = config['replay']['TokenGuide']['aug_ratio']
dataset.get_memory(config, json_file_name, json_file_aug, aug_ratio, concat=True)
else:
raise NotImplementedError
else:
memory_sampling_balanced(
config,
model_old,
dataset.get_old_train_loader(),
('ade', task_setting, task_name, task_step),
logger, gpu,
)
json_file_name = f'memory_{memory_size}.json'
dataset.get_memory(config, json_file_name, concat=True)
logger.info(f"{str(dataset)}")
logger.info(f"{dataset.dataset_info()}")
if config['multiprocessing_distributed']:
train_sampler = DistributedSampler(dataset.train_set)
else:
train_sampler = None
train_loader = dataset.get_train_loader(train_sampler)
val_loader = dataset.get_val_loader()
test_loader = dataset.get_test_loader()
new_classes, old_classes = dataset.get_task_labels()
logger.info(f"Old Classes: {old_classes}")
logger.info(f"New Classes: {new_classes}")
# Create Model
model = config.init_obj('arch', module_arch, **{"classes": dataset.get_per_task_classes()})
model._set_bn_momentum(model.backbone, momentum=0.01)
# Convert BN to SyncBN for DDP
if config['multiprocessing_distributed'] and (config['arch']['args']['norm_act'] == 'bn_sync'):
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
logger.info(model)
# Load previous step weights
if task_step > 0:
# old_path = config.save_dir.parent / f"step_{task_step - 1}" / f"checkpoint-epoch{config['trainer']['epochs']}.pth"
old_path = config.save_dir.parent / f"step_{task_step - 1}" / "checkpoint-epoch100.pth"
model._load_pretrained_model(f'{old_path}')
logger.info(f"Load weights from a previous step:{old_path}")
# Load old model to use KD
if model_old is not None:
model_old._load_pretrained_model(f'{old_path}')
if config['hyperparameter']['ac'] > 0:
logger.info('** Proposed Initialization Technique using an Auxiliary Classifier**')
model.init_novel_classifier()
else:
logger.info('** Random Initialization **')
else:
logger.info('Train from scratch')
# Build optimizer
if task_step > 0:
optimizer = config.init_obj(
'optimizer',
torch.optim,
[{"params": model.get_backbone_params(), "weight_decay": 0},
{"params": model.get_aspp_params(), "lr": config["optimizer"]["args"]["lr"] * 10, "weight_decay": 0},
{"params": model.get_old_classifer_params(), "lr": config["optimizer"]["args"]["lr"] * 10, "weight_decay": 0},
{"params": model.get_new_classifer_params(), "lr": config["optimizer"]["args"]["lr"] * 10}]
)
else:
optimizer = config.init_obj(
'optimizer',
torch.optim,
[{"params": model.get_backbone_params()},
{"params": model.get_aspp_params(), "lr": config["optimizer"]["args"]["lr"] * 10},
{"params": model.get_classifer_params(), "lr": config["optimizer"]["args"]["lr"] * 10}]
)
lr_scheduler = config.init_obj(
'lr_scheduler',
module_lr_scheduler,
**{"optimizer": optimizer, "max_iters": config["trainer"]['epochs'] * len(train_loader)}
)
evaluator_val = config.init_obj(
'evaluator',
module_metric,
*[dataset.n_classes + 1, [0], new_classes]
)
old_classes, _ = dataset.get_task_labels(step=0)
new_classes = []
for i in range(1, task_step + 1):
c, _ = dataset.get_task_labels(step=i)
new_classes += c
evaluator_test = config.init_obj(
'evaluator',
module_metric,
*[dataset.n_classes + 1, list(set(old_classes + [0])), new_classes]
)
if task_step > 0:
trainer = Trainer_incremental(
model=model, model_old=model_old,
optimizer=optimizer,
evaluator=(evaluator_val, evaluator_test),
config=config,
task_info=dataset.task_info(),
data_loader=(train_loader, val_loader, test_loader),
lr_scheduler=lr_scheduler,
logger=logger, gpu=gpu,
)
else:
trainer = Trainer_base(
model=model,
optimizer=optimizer,
evaluator=(evaluator_val, evaluator_test),
config=config,
task_info=dataset.task_info(),
data_loader=(train_loader, val_loader, test_loader),
lr_scheduler=lr_scheduler,
logger=logger, gpu=gpu,
)
logger.print(f"{torch.randint(0, 100, (1, 1))}")
torch.distributed.barrier()
trainer.train()
trainer.test()
if __name__ == '__main__':
args = argparse.ArgumentParser(description='Class incremental Semantic Segmentation')
args.add_argument('-c', '--config', default=None, type=str, help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str, help='indices of GPUs to enable (default: all)')
CustomArgs = collections.namedtuple('CustomArgs', 'flags type action target', defaults=(None, float, None, None))
options = [
CustomArgs(['--multiprocessing_distributed'], action='store_true', target='multiprocessing_distributed'),
CustomArgs(['--dist_url'], type=str, target='dist_url'),
CustomArgs(['--name'], type=str, target='name'),
CustomArgs(['--save_dir'], type=str, target='trainer;save_dir'),
CustomArgs(['--save_period'], type=int, target='trainer;save_period'),
CustomArgs(['--mem_size'], type=int, target='data_loader;args;memory;mem_size'),
CustomArgs(['--seed'], type=int, target='seed'),
CustomArgs(['--ep', '--epochs'], type=int, target='trainer;epochs'),
CustomArgs(['--lr', '--learning_rate'], type=float, target='optimizer;args;lr'),
CustomArgs(['--bs', '--batch_size'], type=int, target='data_loader;args;train;batch_size'),
CustomArgs(['--task_name'], type=str, target='data_loader;args;task;name'),
CustomArgs(['--task_step'], type=int, target='data_loader;args;task;step'),
CustomArgs(['--task_setting'], type=str, target='data_loader;args;task;setting'),
# CustomArgs(['--pos_weight'], type=float, target='hyperparameter;pos_weight'),
CustomArgs(['--pos_weight_new'], type=float, target='hyperparameter;pos_weight_new'),
CustomArgs(['--pos_weight_old'], type=float, target='hyperparameter;pos_weight_old'),
CustomArgs(['--mbce'], type=float, target='hyperparameter;mbce'),
CustomArgs(['--mbce_new_extra'], type=float, target='hyperparameter;mbce_new_extra'),
CustomArgs(['--mbce_old_extra'], type=float, target='hyperparameter;mbce_old_extra'),
CustomArgs(['--kd'], type=float, target='hyperparameter;kd'),
CustomArgs(['--dkd_pos'], type=float, target='hyperparameter;dkd_pos'),
CustomArgs(['--dkd_neg'], type=float, target='hyperparameter;dkd_neg'),
CustomArgs(['--ac'], type=float, target='hyperparameter;ac'),
CustomArgs(['--freeze_bn'], action='store_true', target='arch;args;freeze_all_bn'),
CustomArgs(['--test'], action='store_true', target='test'),
]
config = ConfigParser.from_args(args, options)
main(config)