-
Notifications
You must be signed in to change notification settings - Fork 1
/
masklid.py
267 lines (213 loc) · 9.49 KB
/
masklid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import fasttext
import numpy as np
import re
import string
from copy import deepcopy
class MaskLID:
"""A class for code-switching language identification using iterative masking."""
def __init__(self, model_path, languages=-1):
"""Initialize the MaskLID class.
Args:
model_path (str): The path to the fastText model.
languages (int or list, optional): The indices or list of language labels to consider. Defaults to -1.
"""
self.model = fasttext.load_model(model_path)
self.output_matrix = self.model.get_output_matrix()
self.labels = self.model.get_labels()
self.language_indices = self._compute_language_indices(languages)
self.labels = [self.labels[i] for i in self.language_indices]
def _compute_language_indices(self, languages):
"""Compute indices of selected languages.
Args:
languages (int or list): The indices or list of language labels.
Returns:
list: Indices of selected languages.
"""
if languages != -1 and isinstance(languages, list):
return [self.labels.index(l) for l in set(languages) if l in self.labels]
return list(range(len(self.labels)))
def _softmax(self, x):
"""Compute softmax values for each score in array x.
Args:
x (numpy.ndarray): Input array.
Returns:
numpy.ndarray: Softmax output.
"""
exp_x = np.exp(x - np.max(x))
return exp_x / np.sum(exp_x)
def _normalize_text(self, text):
"""Normalize input text.
Args:
text (str): Input text.
Returns:
str: Normalized text.
"""
replace_by = " "
replacement_map = {ord(c): replace_by for c in '\n_:' + '•#{|}' + string.digits}
text = text.translate(replacement_map)
return re.sub(r'\s+', ' ', text).strip()
def predict(self, text, k=1):
"""Predict the language of the input text.
Args:
text (str): Input text.
k (int, optional): Number of top predictions to retrieve. Defaults to 1.
Returns:
tuple: Top predicted labels and their probabilities.
"""
sentence_vector = self.model.get_sentence_vector(text)
result_vector = np.dot(self.output_matrix, sentence_vector)
softmax_result = self._softmax(result_vector)[self.language_indices]
top_k_indices = np.argsort(softmax_result)[-k:][::-1]
top_k_labels = [self.labels[i] for i in top_k_indices]
top_k_probs = softmax_result[top_k_indices]
return tuple(top_k_labels), top_k_probs
def compute_v(self, sentence_vector):
"""Compute the language vectors for a given sentence vector.
Args:
sentence_vector (numpy.ndarray): Sentence vector.
Returns:
list: Sorted list of labels and their associated vectors.
"""
result_vector = np.dot(self.output_matrix[self.language_indices, :], sentence_vector)
return sorted(zip(self.labels, result_vector), key=lambda x: x[1], reverse=True)
def compute_v_per_word(self, text):
"""Compute language vectors for each word in the input text.
Args:
text (str): Input text.
Returns:
dict: Dictionary containing language vectors for each word.
"""
text = self._normalize_text(text)
words = self.model.get_line(text)[0]
words = [w for w in words if w not in ['</s>', '</s>']]
subword_ids = [self.model.get_subwords(sw)[1] for sw in words]
sentence_vector = [np.sum([self.model.get_input_vector(id) for id in sid], axis=0) for sid in subword_ids]
dict_text = {}
for i, word in enumerate(words):
key = f"{i}_{word}"
dict_text[key] = {'logits': self.compute_v(sentence_vector[i])}
return dict_text
def mask_label_top_k(self, dict_text, label, top_keep, top_remove):
"""Mask top predictions for a given label.
Args:
dict_text (dict): Dictionary containing language vectors for each word.
label (str): Label to mask.
top_keep (int): Number of top predictions to keep.
top_remove (int): Number of top predictions to remove.
Returns:
tuple: Dictionaries of remaining and deleted words after masking.
"""
dict_remained = deepcopy(dict_text)
dict_deleted = {}
for key, value in dict_text.items():
logits = value['logits']
labels = [t[0] for t in logits]
if label in labels[:top_keep]:
dict_deleted[key] = dict_remained[key]
if label in labels[:top_remove]:
dict_remained.pop(key, None)
return dict_remained, dict_deleted
@staticmethod
def get_sizeof(text):
"""Compute the size of text in bytes.
Args:
text (str): Input text.
Returns:
int: Size of text in bytes.
"""
return len(text.encode('utf-8'))
@staticmethod
def custom_sort(word):
"""Custom sorting function for words.
Args:
word (str): Input word.
Returns:
int or float: Sorted value.
"""
match = re.match(r'^(\d+)_', word)
if match:
return int(match.group(1))
else:
return float('inf') # Return infinity for words without numbers at the beginning
def sum_logits(self, dict_data, label):
"""Compute the sum of logits for a specific label across all words.
Args:
dict_data (dict): Dictionary containing language vectors for each word.
label (str): Label to sum logits for.
Returns:
float: Total sum of logits for the given label.
"""
total = 0
for value in dict_data.values():
logits = value['logits']
labels = [t[0] for t in logits]
if label in labels:
total += logits[labels.index(label)][1]
return total
def predict_codeswitch(self, text, beta, alpha, min_prob, min_length, max_lambda=1, max_retry=3, alpha_step_increase=5, beta_step_increase=5):
"""Predict language switching points in the input text.
Args:
text (str): Input text.
beta (int): Number of top predictions to keep.
alpha (int): Number of top predictions to remove.
min_prob (float): Minimum probability threshold for language prediction.
min_length (int): Minimum length of text after masking.
max_lambda (int, optional): Maximum number of iterations. Defaults to 1.
max_retry (int, optional): Maximum number of retries. Defaults to 3.
alpha_step_increase (int, optional): Step increase for alpha. Defaults to 5.
beta_step_increase (int, optional): Step increase for beta. Defaults to 5.
Returns:
dict: Predicted language switching points and associated information.
"""
info = {}
index = 0
retry = 0
# compute v
dict_data = self.compute_v_per_word(text)
while index < max_lambda and retry < max_retry:
# predict the text
pred = self.predict(text, k=1)
label = pred[0][0]
# save the current text in case of step back
prev_text = text
# mask
dict_data, dict_masked = self.mask_label_top_k(dict_data, label, beta, alpha)
# get the text from the masked text and remained text
masked_text = ' '.join(x.split('_', 1)[1] for x in dict_masked.keys())
text = ' '.join(x.split('_', 1)[1] for x in dict_data.keys())
# save info
if self.get_sizeof(masked_text) > min_length or index == 0:
temp_pred = self.predict(masked_text)
if (temp_pred[1][0] > min_prob and temp_pred[0][0] == label) or index == 0:
info[index] = {
'label': label,
'text': masked_text,
'text_keys': dict_masked.keys(),
'size': self.get_sizeof(masked_text),
'sum_logit': self.sum_logits(dict_masked, label)
}
index += 1
else:
text = prev_text
beta += beta_step_increase
alpha += alpha_step_increase
retry += 1
else:
text = prev_text
beta += beta_step_increase
alpha += alpha_step_increase
retry += 1
if self.get_sizeof(text) < min_length:
break
# post-process
post_info = {}
for value in info.values():
key = value['label']
if key in post_info:
post_info[key].extend(value['text_keys'])
else:
post_info[key] = list(value['text_keys'])
# join sorted the text from list of keys
for key in post_info:
post_info[key] = ' '.join([x.split('_', 1)[1] for x in sorted(set(post_info[key]), key=self.custom_sort)])
return post_info