Skip to content

Latest commit

 

History

History
77 lines (53 loc) · 7.29 KB

README.md

File metadata and controls

77 lines (53 loc) · 7.29 KB

MaskLID

This repository maintains the code for

MaskLID: Code-Switching Language Identification through Iterative Masking (ACL 2024): https://arxiv.org/abs/2406.06263

MaskLID is a simple, yet effective, code-switching (CS) language identification (LID) method. MaskLID does not require any training and is designed to complement current high-performance sentence-level LIDs. Sentence-level LIDs are classifiers trained on monolingual texts to provide single labels, typically using a softmax layer to turn scores into probabilities. However, in cases where a sentence is composed in both L1 and L2 languages, the LID classifier often only returns the dominant label L1. To address this limitation, MaskLID employs a strategy to mask text features associated with L1, allowing the LID to classify the text as L2 in the next round. This method uses the LID itself to identify the features that require masking and does not rely on any external resource.

Demo Gradio

We host a demo of MaskLID with GlotLID on Hugging Face: https://huggingface.co/spaces/cis-lmu/MaskLID. You can control the parameters and see the effects.

Code Python

# !pip install fasttext
# !pip install numpy

# !wget https://raw.githubusercontent.com/cisnlp/MaskLID/main/masklid.py
# !wget https://huggingface.co/cis-lmu/glotlid/resolve/main/model_v3.bin
# masklid is the name of masklid.py
from masklid import MaskLID

# path to glotlid model
model_path = 'model_v3.bin'

# GlotLID has more than 2000 labels, here we limit the GlotLID to the 200 languages available in flores
flores_glotlid = ['__label__eng_Latn', '__label__arb_Arab', '__label__rus_Cyrl', '__label__por_Latn', '__label__pol_Latn', '__label__ekk_Latn', '__label__ell_Grek', '__label__slk_Latn', '__label__slv_Latn', '__label__nld_Latn', '__label__lvs_Latn', '__label__hun_Latn', '__label__dan_Latn', '__label__swe_Latn', '__label__lit_Latn', '__label__fin_Latn', '__label__mlt_Latn', '__label__cmn_Hani', '__label__nob_Latn', '__label__kor_Hang', '__label__ind_Latn', '__label__uzn_Latn', '__label__fil_Latn', '__label__ukr_Cyrl', '__label__hin_Deva', '__label__hin_Latn', '__label__afr_Latn', '__label__mar_Deva', '__label__ceb_Latn', '__label__ilo_Latn', '__label__zul_Latn', '__label__heb_Hebr', '__label__xho_Latn', '__label__vie_Latn', '__label__jpn_Jpan', '__label__guj_Gujr', '__label__hrv_Latn', '__label__tur_Latn', '__label__nya_Latn', '__label__tsn_Latn', '__label__sna_Latn', '__label__tso_Latn', '__label__tha_Thai', '__label__spa_Latn', '__label__deu_Latn', '__label__eus_Latn', '__label__bul_Cyrl', '__label__amh_Ethi', '__label__fra_Latn', '__label__ewe_Latn', '__label__mkd_Cyrl', '__label__nso_Latn', '__label__tam_Taml', '__label__lin_Latn', '__label__twi_Latn', '__label__yor_Latn', '__label__als_Latn', '__label__ibo_Latn', '__label__ben_Beng', '__label__ita_Latn', '__label__tpi_Latn', '__label__azj_Latn', '__label__run_Latn', '__label__mya_Mymr', '__label__kin_Latn', '__label__ron_Latn', '__label__ces_Latn', '__label__kat_Geor', '__label__urd_Arab', '__label__zsm_Latn', '__label__pap_Latn', '__label__bem_Latn', '__label__mal_Mlym', '__label__kir_Cyrl', '__label__hye_Armn', '__label__smo_Latn', '__label__sin_Sinh', '__label__fij_Latn', '__label__kan_Knda', '__label__pan_Guru', '__label__hau_Latn', '__label__epo_Latn', '__label__gaz_Latn', '__label__tir_Ethi', '__label__bos_Latn', '__label__srp_Cyrl', '__label__hat_Latn', '__label__pag_Latn', '__label__lua_Latn', '__label__war_Latn', '__label__tel_Telu', '__label__tat_Cyrl', '__label__sag_Latn', '__label__lug_Latn', '__label__tum_Latn', '__label__swh_Latn', '__label__umb_Latn', '__label__som_Latn', '__label__gle_Latn', '__label__kng_Latn', '__label__mos_Latn', '__label__lus_Latn', '__label__khk_Cyrl', '__label__asm_Beng', '__label__tuk_Latn', '__label__quy_Latn', '__label__ayr_Latn', '__label__luo_Latn', '__label__tgk_Cyrl', '__label__cat_Latn', '__label__ssw_Latn', '__label__nno_Latn', '__label__cym_Latn', '__label__kik_Latn', '__label__kmb_Latn', '__label__ory_Orya', '__label__bel_Cyrl', '__label__bho_Deva', '__label__apc_Arab', '__label__bak_Cyrl', '__label__jav_Latn', '__label__yue_Hani', '__label__pbt_Arab', '__label__khm_Khmr', '__label__npi_Deva', '__label__npi_Latn', '__label__gug_Latn', '__label__uig_Arab', '__label__fur_Latn', '__label__kbp_Latn', '__label__hne_Deva', '__label__kam_Latn', '__label__gla_Latn', '__label__kab_Latn', '__label__arz_Arab', '__label__kaz_Cyrl', '__label__mri_Latn', '__label__lim_Latn', '__label__srd_Latn', '__label__sun_Latn', '__label__plt_Latn', '__label__mni_Beng', '__label__isl_Latn', '__label__vec_Latn', '__label__glg_Latn', '__label__scn_Latn', '__label__fao_Latn', '__label__san_Deva', '__label__ltz_Latn', '__label__cjk_Latn', '__label__ast_Latn', '__label__lmo_Latn', '__label__szl_Latn', '__label__oci_Latn', '__label__fon_Latn', '__label__min_Latn', '__label__wol_Latn', '__label__lij_Latn', '__label__ajp_Arab', '__label__snd_Arab', '__label__dik_Latn', '__label__ary_Arab', '__label__lao_Laoo', '__label__ars_Arab', '__label__bjn_Latn', '__label__shn_Mymr', '__label__crh_Latn', '__label__aeb_Arab', '__label__ace_Latn', '__label__ckb_Arab', '__label__dyu_Latn', '__label__ltg_Latn', '__label__kmr_Latn', '__label__ban_Latn', '__label__mai_Deva', '__label__fuv_Latn', '__label__kac_Latn', '__label__taq_Latn', '__label__bam_Latn', '__label__sat_Olck', '__label__tzm_Tfng', '__label__bug_Latn', '__label__dzo_Tibt', '__label__kas_Deva', '__label__fas_Arab', '__label__nus_Latn', '__label__knc_Latn', '__label__mag_Deva', '__label__taq_Tfng', '__label__kas_Arab', '__label__knc_Arab', '__label__bjn_Arab', '__label__ace_Arab', '__label__kea_Latn', '__label__awa_Deva', '__label__acm_Arab', '__label__bod_Tibt', '__label__sot_Latn', '__label__ydd_Hebr', '__label__azb_Arab']

# if you want GlotLID to work for all languages, set 'languages' to -1.
masklid_model = MaskLID(model_path, languages = flores_glotlid)
# now that you have created the masklid_model object, you can run the `predict_codeswitch` method as many times as you want.
text = "bir kahve dükkanında geçen film tadında güzel bir şarkıya ayrılsın gece falling in love at a coffee shop"
ans = masklid_model.predict_codeswitch(text, beta = 20 , alpha = 3, max_lambda = 3, min_length = 10, min_prob = 0.90, max_retry=3, alpha_step_increase = 3, beta_step_increase = 5)
ans
>> {'__label__tur_Latn': 'bir kahve dükkanında geçen tadında güzel bir şarkıya ayrılsın gece',
 '__label__eng_Latn': 'film falling in love at coffee shop'}

Citation

If you find our method and code useful for your research, please cite:

ACL citation (preferred)

@inproceedings{kargaran-etal-2024-masklid,
	title        = {MaskLID: Code-Switching Language Identification through Iterative Masking},
	author       = {Kargaran, Amir Hossein and Yvon, Fran{\c{c}}ois and Sch{\"u}tze, Hinrich},
	year         = 2024,
	booktitle    = {Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
	publisher    = {Association for Computational Linguistics},
	address      = {Bangkok, Thailand}
}

ArXiv citation

@article{kargaran2024masklid,
  title={MaskLID: Code-Switching Language Identification through Iterative Masking},
  author={Kargaran, Amir Hossein and Yvon, Fran{\c{c}}ois and Sch{\"u}tze, Hinrich},
  journal={arXiv preprint arXiv:2406.06263},
  year={2024}
}