-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy pathhss_keygen.c
365 lines (326 loc) · 14 KB
/
hss_keygen.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#include <stdlib.h>
#include <string.h>
#include "common_defs.h"
#include "hss.h"
#include "hss_internal.h"
#include "hss_aux.h"
#include "endian.h"
#include "hash.h"
#include "hss_thread.h"
#include "lm_common.h"
#include "lm_ots_common.h"
/* Count the number of 1 bits at the end (lsbits) of the integer */
/* Do it in the obvious way; straightline code may be faster (no */
/* unpredictable jumps, which are costly), but that would be less scrutable */
static int trailing_1_bits(merkle_index_t n) {
int i;
for (i=0; n&1; n>>=1, i++)
;
return i;
}
/*
* This creates a private key (and the correspond public key, and optionally
* the aux data for that key)
* Parameters:
* generate_random - the function to be called to generate randomness. This
* is assumed to be a pointer to a cryptographically secure rng,
* otherwise all security is lost. This function is expected to fill
* output with 'length' uniformly distributed bits, and return 1 on
* success, 0 if something went wrong
* levels - the number of levels for the key pair (2-8)
* lm_type - an array of the LM registry entries for the various levels;
* entry 0 is the topmost
* lm_ots_type - an array of the LM-OTS registry entries for the various
* levels; again, entry 0 is the topmost
* update_private_key, context - the function that is called when the
* private key is generated; it is expected to store it to secure NVRAM
* If this is NULL, then the context pointer is reinterpretted to mean
* where in RAM the private key is expected to be placed
* public_key - where to store the public key
* len_public_key - length of the above buffer; see hss_get_public_key_len
* if you need a hint.
* aux_data - where to store the optional aux data. This is not required, but
* if provided, can be used to speed up the hss_generate_working_key
* process;
* len_aux_data - the length of the above buffer. This is not fixed length;
* the function will run different time/memory trade-offs based on the
* length provided
*
* This returns true on success, false on failure
*/
bool hss_generate_private_key(
bool (*generate_random)(void *output, size_t length),
unsigned levels,
const param_set_t *lm_type,
const param_set_t *lm_ots_type,
bool (*update_private_key)(unsigned char *private_key,
size_t len_private_key, void *context),
void *context,
unsigned char *public_key, size_t len_public_key,
unsigned char *aux_data, size_t len_aux_data,
struct hss_extra_info *info) {
struct hss_extra_info info_temp = { 0 };
if (!info) info = &info_temp;
if (!generate_random) {
/* We *really* need random numbers */
info->error_code = hss_error_no_randomness;
return false;
}
if (levels < MIN_HSS_LEVELS || levels > MAX_HSS_LEVELS) {
/* parameter out of range */
info->error_code = hss_error_bad_param_set;
return false;
}
unsigned h0; /* The height of the root tree */
unsigned h; /* The hash function used */
unsigned size_hash; /* The size of each hash that would appear in the */
/* aux data */
if (!lm_look_up_parameter_set(lm_type[0], &h, &size_hash, &h0)) {
info->error_code = hss_error_bad_param_set;
return false;
}
/* Check the public_key_len */
if (4 + 4 + 4 + I_LEN + size_hash > len_public_key) {
info->error_code = hss_error_buffer_overflow;
/* public key won't fit in the buffer we're given */
return false;
}
/* If you provide an aux_data buffer, we have to write something */
/* into it (at least, enough to mark it as 'we're not really using */
/* aux data) */
if (aux_data && len_aux_data == 0) {
/* not enough aux data buffer to mark it as 'not really used' */
info->error_code = hss_error_bad_aux;
return false;
}
unsigned len_ots_pub = lm_ots_get_public_key_len(lm_ots_type[0]);
if (len_ots_pub == 0) {
info->error_code = hss_error_bad_param_set;
return false;
}
unsigned char private_key[ PRIVATE_KEY_LEN ];
/* First step: format the private key */
put_bigendian( private_key + PRIVATE_KEY_INDEX, 0,
PRIVATE_KEY_INDEX_LEN );
if (!hss_compress_param_set( private_key + PRIVATE_KEY_PARAM_SET,
levels, lm_type, lm_ots_type,
PRIVATE_KEY_PARAM_SET_LEN )) {
info->error_code = hss_error_bad_param_set;
return false;
}
if (!(*generate_random)( private_key + PRIVATE_KEY_SEED,
PRIVATE_KEY_SEED_LEN )) {
info->error_code = hss_error_bad_randomness;
return false;
}
/* Now make sure that the private key is written to NVRAM */
if (update_private_key) {
if (!(*update_private_key)( private_key, PRIVATE_KEY_LEN, context)) {
/* initial write of private key didn't take */
info->error_code = hss_error_private_key_write_failed;
hss_zeroize( private_key, sizeof private_key );
return false;
}
} else {
if (context == 0) {
/* We weren't given anywhere to place the private key */
info->error_code = hss_error_no_private_buffer;
hss_zeroize( private_key, sizeof private_key );
return false;
}
memcpy( context, private_key, PRIVATE_KEY_LEN );
}
/* Figure out what would be the best trade-off for the aux level */
struct expanded_aux_data *expanded_aux_data = 0, aux_data_storage;
if (aux_data != NULL) {
aux_level_t aux_level = hss_optimal_aux_level( len_aux_data, lm_type,
lm_ots_type, NULL );
hss_store_aux_marker( aux_data, aux_level );
/* Set up the aux data pointers */
expanded_aux_data = hss_expand_aux_data( aux_data, len_aux_data,
&aux_data_storage, size_hash, 0 );
}
unsigned char I[I_LEN];
unsigned char seed[SEED_LEN];
if (!hss_generate_root_seed_I_value( seed, I, private_key+PRIVATE_KEY_SEED)) {
info->error_code = hss_error_internal;
hss_zeroize( private_key, sizeof private_key );
return false;
}
/* Now, it's time to generate the public key, which means we need to */
/* compute the entire top level Merkle tree */
/* First of all, figure out the appropriate level to compute up to */
/* in parallel. We'll do the lower of the bottom-most level that */
/* appears in the aux data, and 4*log2 of the number of core we have */
unsigned num_cores = hss_thread_num_tracks(info->num_threads);
unsigned level;
unsigned char *dest = 0; /* The area we actually write to */
void *temp_buffer = 0; /* The buffer we need to free when done */
for (level = h0-1; level > 1; level--) {
/* If our bottom-most aux data is at this level, we want it */
if (expanded_aux_data && expanded_aux_data->data[level]) {
/* Write directly into the aux area */
dest = expanded_aux_data->data[level];
break;
}
/* If going to a higher levels would mean that we wouldn't */
/* effectively use all the cores we have, use this level */
if ((1<<level) < 4*num_cores) {
/* We'll write into a temp area; malloc the space */
size_t temp_buffer_size = (size_t)size_hash << level;
temp_buffer = malloc(temp_buffer_size);
if (!temp_buffer) {
/* Couldn't malloc it; try again with s smaller buffer */
continue;
}
/* Use this buffer */
dest = temp_buffer;
break;
}
}
/* Worse comes the worse, if we can't malloc anything, use a */
/* small backup buffer */
unsigned char worse_case_buffer[ 4*MAX_HASH ];
if (!dest) {
dest = worse_case_buffer;
/* level == 2 if we reach here, so the buffer is big enough */
}
/*
* Now, issue all the work items to generate the intermediate hashes
* These intermediate passes are potentially computed in parallel;
* allowing that is why we use this funky thread_collection and details
* structure
*/
struct thread_collection *col = hss_thread_init(info->num_threads);
struct intermed_tree_detail details;
/* Set the values in the details structure that are constant */
details.seed = seed;
details.lm_type = lm_type[0];
details.lm_ots_type = lm_ots_type[0];
details.h = h;
details.tree_height = h0;
details.I = I;
enum hss_error_code got_error = hss_error_none; /* This flag is set */
/* on an error */
details.got_error = &got_error;
merkle_index_t j;
/* # of nodes at this level */
merkle_index_t level_nodes = (merkle_index_t)1 << level;
/* the index of the node we're generating right now */
merkle_index_t node_num = level_nodes;
/*
* We'd prefer not to issue a separate work item for every node; we
* might be doing millions of node (if we have a large aux data space)
* and we end up malloc'ing a large structure for every work order.
* So, if we do have a large number of requires, aggregate them
*/
merkle_index_t increment = level_nodes / (10 * num_cores);
#define MAX_INCREMENT 20000
if (increment > MAX_INCREMENT) increment = MAX_INCREMENT;
if (increment == 0) increment = 1;
for (j=0; j < level_nodes; ) {
unsigned this_increment;
if (level_nodes - j < increment) {
this_increment = level_nodes - j;
} else {
this_increment = increment;
}
/* Set the particulars of this specific work item */
details.dest = dest + j*size_hash;
details.node_num = node_num;
details.node_count = this_increment;
/* Issue a separate work request for every node at this level */
hss_thread_issue_work(col, hss_gen_intermediate_tree,
&details, sizeof details );
j += this_increment;
node_num += this_increment;
}
/* Now wait for all those work items to complete */
hss_thread_done(col);
hss_zeroize( seed, sizeof seed );
/* Check if something went wrong. It really shouldn't have, however if */
/* something returns an error code, we really should try to handle it */
if (got_error != hss_error_none) {
/* We failed; give up */
info->error_code = got_error;
hss_zeroize( private_key, sizeof private_key );
if (update_private_key) {
(void)(*update_private_key)(private_key, PRIVATE_KEY_LEN, context);
} else {
hss_zeroize( context, PRIVATE_KEY_LEN );
}
free(temp_buffer);
return false;
}
/* Now, we complete the rest of the tree. This is actually fairly fast */
/* (one hash per node) so we don't bother to parallelize it */
unsigned char stack[ MAX_HASH * (MAX_MERKLE_HEIGHT+1) ];
unsigned char root_hash[ MAX_HASH ];
/* Generate the top levels of the tree, ending with the root node */
merkle_index_t r, leaf_node;
for (r=level_nodes, leaf_node = 0; leaf_node < level_nodes; r++, leaf_node++) {
/* Walk up the stack, combining the current node with what's on */
/* the atack */
merkle_index_t q = leaf_node;
/*
* For the subtree which this leaf node forms the final piece, put the
* destination to where we'll want it, either on the stack, or if this
* is the final piece, to where the caller specified
*/
unsigned char *current_buf;
int stack_offset = trailing_1_bits( leaf_node );
if (stack_offset == level) {
current_buf = root_hash;
} else {
current_buf = &stack[stack_offset * size_hash ];
}
memcpy( current_buf, dest + leaf_node * size_hash, size_hash );
unsigned sp;
unsigned cur_lev = level;
for (sp = 1;; sp++, cur_lev--, q >>= 1) {
/* Give the aux data routines a chance to save the */
/* intermediate value. Note that we needn't check for the */
/* bottommost level; if we're saving aux data at that level, */
/* we've already placed it there */
if (sp > 1) {
hss_save_aux_data( expanded_aux_data, cur_lev,
size_hash, q, current_buf );
}
if (sp > stack_offset) break;
hss_combine_internal_nodes( current_buf,
&stack[(sp-1) * size_hash], current_buf,
h, I, size_hash,
r >> sp );
}
}
/* The top entry in the stack is the root value (aka the public key) */
/* Complete the computation of the aux data */
hss_finalize_aux_data( expanded_aux_data, size_hash, h,
private_key+PRIVATE_KEY_SEED );
/* We have the root value; now format the public key */
put_bigendian( public_key, levels, 4 );
public_key += 4; len_public_key -= 4;
put_bigendian( public_key, lm_type[0], 4 );
public_key += 4; len_public_key -= 4;
put_bigendian( public_key, lm_ots_type[0], 4 );
public_key += 4; len_public_key -= 4;
memcpy( public_key, I, I_LEN );
public_key += I_LEN; len_public_key -= I_LEN;
memcpy( public_key, root_hash, size_hash );
public_key += size_hash; len_public_key -= size_hash;
/* Hey, what do you know -- it all worked! */
hss_zeroize( private_key, sizeof private_key ); /* Zeroize local copy of */
/* the private key */
free(temp_buffer);
return true;
}
/*
* The length of the private key
*/
size_t hss_get_private_key_len(unsigned levels,
const param_set_t *lm_type,
const param_set_t *lm_ots_type) {
/* A private key is a 'public object'? Yes, in the sense that we */
/* export it outside this module */
return PRIVATE_KEY_LEN;
}