@@ -37,12 +37,12 @@ algorithms more generally such as mixed radix representation, permutation
37
37
inverse computation, etc.
38
38
39
39
The motivation and origin of this library is our research on fitness landscape analysis
40
- for permutation optimization problems [ @cicirello2018a ; @cicirello2016 ; @cicirello2014 ; @cicirello2013 ] . In a
40
+ for permutation optimization [ @cicirello2018a ; @cicirello2016 ; @cicirello2014 ; @cicirello2013 ] . In a
41
41
permutation optimization problem, solutions are represented by
42
42
permutations of some set, and the objective is to maximize
43
43
or minimize some function. For example, a solution
44
- to a traveling salesperson problem (TSP) is the permutation of the set of cities
45
- that corresponds to the minimal cost tour of the cities .
44
+ to a traveling salesperson problem is the permutation of the set of cities
45
+ that corresponds to the minimal cost tour.
46
46
During our research, we developed a Java library of permutation distance
47
47
metrics. Most of the distance metrics in the literature are described mathematically with
48
48
no source code available. Thus, our library offers convenient access to efficient
@@ -92,7 +92,7 @@ The following table summarizes the permutation distances in the library, their r
92
92
($n$ is permutation length), and whether they satisfy the metric requirements.
93
93
94
94
Distance | Runtime | Metric? | Citations
95
- ---------- | ------ | ---- | ----------
95
+ ---------- | ------ | --- | - ----------
96
96
acyclic edge distance | $O(n)$ | pseudo | [ @ronald1997 ; @ronald1995 ]
97
97
cyclic edge distance | $O(n)$ | pseudo | [ @ronald1997 ; @ronald1995 ]
98
98
cyclic r-type distance | $O(n)$ | pseudo | [ @cicirello2016 ]
@@ -105,14 +105,14 @@ Kendall tau distance | $O(n \lg n)$ | yes | [@kendall1938; @meila2010; @fagin200
105
105
Lee distance | $O(n)$ | yes | [ @lee58 ]
106
106
r-type distance | $O(n)$ | yes | [ @campos2005 ; @marti2005 ]
107
107
reinsertion distance | $O(n \lg n)$ | yes | [ @cicirello2016 ; @cicirello2013 ]
108
- reversal distance | Init: $O(n!n^3)$ Compute : $O(n^2)$ | yes | [ @cicirello2016 ; @caprara1997 ]
108
+ reversal distance | Init: $O(n!n^3)$ Calc : $O(n^2)$ | yes | [ @cicirello2016 ; @caprara1997 ]
109
109
squared deviation distance | $O(n)$ | yes | [ @sevaux2005 ]
110
110
111
111
The next table summarizes the metrics on
112
112
sequences ($n \leq m$ are the lengths of the compared sequences).
113
113
114
114
Distance | Runtime | Metric? | Citations
115
- ---------- | ------ | ---- | ----------
115
+ ---------- | ------ | --- | - ----------
116
116
edit distance | $O(n* m)$ | yes | [ @wagner74 ]
117
117
exact match distance | $O(n)$ | yes | [ @ronald1998 ]
118
118
Kendall tau sequence distance | $O(n \lg n)$ | yes | [ @kendall1938 ; @cicirello2018b ]
0 commit comments