-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathall_layers.hpp
635 lines (543 loc) · 22.2 KB
/
all_layers.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_DNN_ALL_LAYERS_HPP
#define OPENCV_DNN_DNN_ALL_LAYERS_HPP
#include <opencv2/dnn.hpp>
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
//! @addtogroup dnn
//! @{
/** @defgroup dnnLayerList Partial List of Implemented Layers
@{
This subsection of dnn module contains information about built-in layers and their descriptions.
Classes listed here, in fact, provides C++ API for creating instances of built-in layers.
In addition to this way of layers instantiation, there is a more common factory API (see @ref dnnLayerFactory), it allows to create layers dynamically (by name) and register new ones.
You can use both API, but factory API is less convenient for native C++ programming and basically designed for use inside importers (see @ref readNetFromCaffe(), @ref readNetFromTorch(), @ref readNetFromTensorflow()).
Built-in layers partially reproduce functionality of corresponding Caffe and Torch7 layers.
In particular, the following layers and Caffe importer were tested to reproduce <a href="http://caffe.berkeleyvision.org/tutorial/layers.html">Caffe</a> functionality:
- Convolution
- Deconvolution
- Pooling
- InnerProduct
- TanH, ReLU, Sigmoid, BNLL, Power, AbsVal
- Softmax
- Reshape, Flatten, Slice, Split
- LRN
- MVN
- Dropout (since it does nothing on forward pass -))
*/
class CV_EXPORTS BlankLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams ¶ms);
};
/**
* Constant layer produces the same data blob at an every forward pass.
*/
class CV_EXPORTS ConstLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams ¶ms);
};
//! LSTM recurrent layer
class CV_EXPORTS LSTMLayer : public Layer
{
public:
/** Creates instance of LSTM layer */
static Ptr<LSTMLayer> create(const LayerParams& params);
/** @deprecated Use LayerParams::blobs instead.
@brief Set trained weights for LSTM layer.
LSTM behavior on each step is defined by current input, previous output, previous cell state and learned weights.
Let @f$x_t@f$ be current input, @f$h_t@f$ be current output, @f$c_t@f$ be current state.
Than current output and current cell state is computed as follows:
@f{eqnarray*}{
h_t &= o_t \odot tanh(c_t), \\
c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\
@f}
where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned wights.
Gates are computed as follows:
@f{eqnarray*}{
i_t &= sigmoid&(W_{xi} x_t + W_{hi} h_{t-1} + b_i), \\
f_t &= sigmoid&(W_{xf} x_t + W_{hf} h_{t-1} + b_f), \\
o_t &= sigmoid&(W_{xo} x_t + W_{ho} h_{t-1} + b_o), \\
g_t &= tanh &(W_{xg} x_t + W_{hg} h_{t-1} + b_g), \\
@f}
where @f$W_{x?}@f$, @f$W_{h?}@f$ and @f$b_{?}@f$ are learned weights represented as matrices:
@f$W_{x?} \in R^{N_h \times N_x}@f$, @f$W_{h?} \in R^{N_h \times N_h}@f$, @f$b_? \in R^{N_h}@f$.
For simplicity and performance purposes we use @f$ W_x = [W_{xi}; W_{xf}; W_{xo}, W_{xg}] @f$
(i.e. @f$W_x@f$ is vertical concatenation of @f$ W_{x?} @f$), @f$ W_x \in R^{4N_h \times N_x} @f$.
The same for @f$ W_h = [W_{hi}; W_{hf}; W_{ho}, W_{hg}], W_h \in R^{4N_h \times N_h} @f$
and for @f$ b = [b_i; b_f, b_o, b_g]@f$, @f$b \in R^{4N_h} @f$.
@param Wh is matrix defining how previous output is transformed to internal gates (i.e. according to above mentioned notation is @f$ W_h @f$)
@param Wx is matrix defining how current input is transformed to internal gates (i.e. according to above mentioned notation is @f$ W_x @f$)
@param b is bias vector (i.e. according to above mentioned notation is @f$ b @f$)
*/
CV_DEPRECATED virtual void setWeights(const Mat &Wh, const Mat &Wx, const Mat &b) = 0;
/** @brief Specifies shape of output blob which will be [[`T`], `N`] + @p outTailShape.
* @details If this parameter is empty or unset then @p outTailShape = [`Wh`.size(0)] will be used,
* where `Wh` is parameter from setWeights().
*/
virtual void setOutShape(const MatShape &outTailShape = MatShape()) = 0;
/** @deprecated Use flag `produce_cell_output` in LayerParams.
* @brief Specifies either interpret first dimension of input blob as timestamp dimenion either as sample.
*
* If flag is set to true then shape of input blob will be interpreted as [`T`, `N`, `[data dims]`] where `T` specifies number of timestamps, `N` is number of independent streams.
* In this case each forward() call will iterate through `T` timestamps and update layer's state `T` times.
*
* If flag is set to false then shape of input blob will be interpreted as [`N`, `[data dims]`].
* In this case each forward() call will make one iteration and produce one timestamp with shape [`N`, `[out dims]`].
*/
CV_DEPRECATED virtual void setUseTimstampsDim(bool use = true) = 0;
/** @deprecated Use flag `use_timestamp_dim` in LayerParams.
* @brief If this flag is set to true then layer will produce @f$ c_t @f$ as second output.
* @details Shape of the second output is the same as first output.
*/
CV_DEPRECATED virtual void setProduceCellOutput(bool produce = false) = 0;
/* In common case it use single input with @f$x_t@f$ values to compute output(s) @f$h_t@f$ (and @f$c_t@f$).
* @param input should contain packed values @f$x_t@f$
* @param output contains computed outputs: @f$h_t@f$ (and @f$c_t@f$ if setProduceCellOutput() flag was set to true).
*
* If setUseTimstampsDim() is set to true then @p input[0] should has at least two dimensions with the following shape: [`T`, `N`, `[data dims]`],
* where `T` specifies number of timestamps, `N` is number of independent streams (i.e. @f$ x_{t_0 + t}^{stream} @f$ is stored inside @p input[0][t, stream, ...]).
*
* If setUseTimstampsDim() is set to false then @p input[0] should contain single timestamp, its shape should has form [`N`, `[data dims]`] with at least one dimension.
* (i.e. @f$ x_{t}^{stream} @f$ is stored inside @p input[0][stream, ...]).
*/
int inputNameToIndex(String inputName) CV_OVERRIDE;
int outputNameToIndex(const String& outputName) CV_OVERRIDE;
};
/** @brief Classical recurrent layer
Accepts two inputs @f$x_t@f$ and @f$h_{t-1}@f$ and compute two outputs @f$o_t@f$ and @f$h_t@f$.
- input: should contain packed input @f$x_t@f$.
- output: should contain output @f$o_t@f$ (and @f$h_t@f$ if setProduceHiddenOutput() is set to true).
input[0] should have shape [`T`, `N`, `data_dims`] where `T` and `N` is number of timestamps and number of independent samples of @f$x_t@f$ respectively.
output[0] will have shape [`T`, `N`, @f$N_o@f$], where @f$N_o@f$ is number of rows in @f$ W_{xo} @f$ matrix.
If setProduceHiddenOutput() is set to true then @p output[1] will contain a Mat with shape [`T`, `N`, @f$N_h@f$], where @f$N_h@f$ is number of rows in @f$ W_{hh} @f$ matrix.
*/
class CV_EXPORTS RNNLayer : public Layer
{
public:
/** Creates instance of RNNLayer */
static Ptr<RNNLayer> create(const LayerParams& params);
/** Setups learned weights.
Recurrent-layer behavior on each step is defined by current input @f$ x_t @f$, previous state @f$ h_t @f$ and learned weights as follows:
@f{eqnarray*}{
h_t &= tanh&(W_{hh} h_{t-1} + W_{xh} x_t + b_h), \\
o_t &= tanh&(W_{ho} h_t + b_o),
@f}
@param Wxh is @f$ W_{xh} @f$ matrix
@param bh is @f$ b_{h} @f$ vector
@param Whh is @f$ W_{hh} @f$ matrix
@param Who is @f$ W_{xo} @f$ matrix
@param bo is @f$ b_{o} @f$ vector
*/
virtual void setWeights(const Mat &Wxh, const Mat &bh, const Mat &Whh, const Mat &Who, const Mat &bo) = 0;
/** @brief If this flag is set to true then layer will produce @f$ h_t @f$ as second output.
* @details Shape of the second output is the same as first output.
*/
virtual void setProduceHiddenOutput(bool produce = false) = 0;
};
class CV_EXPORTS BaseConvolutionLayer : public Layer
{
public:
Size kernel, stride, pad, dilation, adjustPad;
String padMode;
int numOutput;
};
class CV_EXPORTS ConvolutionLayer : public BaseConvolutionLayer
{
public:
static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
};
class CV_EXPORTS DeconvolutionLayer : public BaseConvolutionLayer
{
public:
static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
};
class CV_EXPORTS LRNLayer : public Layer
{
public:
int type;
int size;
float alpha, beta, bias;
bool normBySize;
static Ptr<LRNLayer> create(const LayerParams& params);
};
class CV_EXPORTS PoolingLayer : public Layer
{
public:
int type;
Size kernel, stride;
int strideW,strideH;//add for ocr
int pad_l, pad_t, pad_r, pad_b;
CV_DEPRECATED_EXTERNAL Size pad;
bool globalPooling;
bool computeMaxIdx;
String padMode;
bool ceilMode;
// If true for average pooling with padding, divide an every output region
// by a whole kernel area. Otherwise exclude zero padded values and divide
// by number of real values.
bool avePoolPaddedArea;
// ROIPooling parameters.
Size pooledSize;
float spatialScale;
// PSROIPooling parameters.
int psRoiOutChannels;
static Ptr<PoolingLayer> create(const LayerParams& params);
};
class CV_EXPORTS SoftmaxLayer : public Layer
{
public:
bool logSoftMax;
static Ptr<SoftmaxLayer> create(const LayerParams& params);
};
class CV_EXPORTS InnerProductLayer : public Layer
{
public:
int axis;
static Ptr<InnerProductLayer> create(const LayerParams& params);
};
class CV_EXPORTS MVNLayer : public Layer
{
public:
float eps;
bool normVariance, acrossChannels;
static Ptr<MVNLayer> create(const LayerParams& params);
};
/* Reshaping */
class CV_EXPORTS ReshapeLayer : public Layer
{
public:
MatShape newShapeDesc;
Range newShapeRange;
static Ptr<ReshapeLayer> create(const LayerParams& params);
};
class CV_EXPORTS FlattenLayer : public Layer
{
public:
static Ptr<FlattenLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS ConcatLayer : public Layer
{
public:
int axis;
/**
* @brief Add zero padding in case of concatenation of blobs with different
* spatial sizes.
*
* Details: https://github.com/torch/nn/blob/master/doc/containers.md#depthconcat
*/
bool padding;
static Ptr<ConcatLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS SplitLayer : public Layer
{
public:
int outputsCount; //!< Number of copies that will be produced (is ignored when negative).
static Ptr<SplitLayer> create(const LayerParams ¶ms);
};
/**
* Slice layer has several modes:
* 1. Caffe mode
* @param[in] axis Axis of split operation
* @param[in] slice_point Array of split points
*
* Number of output blobs equals to number of split points plus one. The
* first blob is a slice on input from 0 to @p slice_point[0] - 1 by @p axis,
* the second output blob is a slice of input from @p slice_point[0] to
* @p slice_point[1] - 1 by @p axis and the last output blob is a slice of
* input from @p slice_point[-1] up to the end of @p axis size.
*
* 2. TensorFlow mode
* @param begin Vector of start indices
* @param size Vector of sizes
*
* More convenient numpy-like slice. One and only output blob
* is a slice `input[begin[0]:begin[0]+size[0], begin[1]:begin[1]+size[1], ...]`
*
* 3. Torch mode
* @param axis Axis of split operation
*
* Split input blob on the equal parts by @p axis.
*/
class CV_EXPORTS SliceLayer : public Layer
{
public:
/**
* @brief Vector of slice ranges.
*
* The first dimension equals number of output blobs.
* Inner vector has slice ranges for the first number of input dimensions.
*/
std::vector<std::vector<Range> > sliceRanges;
int axis;
static Ptr<SliceLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS PermuteLayer : public Layer
{
public:
static Ptr<PermuteLayer> create(const LayerParams& params);
};
/**
* Permute channels of 4-dimensional input blob.
* @param group Number of groups to split input channels and pick in turns
* into output blob.
*
* \f[ groupSize = \frac{number\ of\ channels}{group} \f]
* \f[ output(n, c, h, w) = input(n, groupSize \times (c \% group) + \lfloor \frac{c}{group} \rfloor, h, w) \f]
* Read more at https://arxiv.org/pdf/1707.01083.pdf
*/
class CV_EXPORTS ShuffleChannelLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams& params);
int group;
};
/**
* @brief Adds extra values for specific axes.
* @param paddings Vector of paddings in format
* @code
* [ pad_before, pad_after, // [0]th dimension
* pad_before, pad_after, // [1]st dimension
* ...
* pad_before, pad_after ] // [n]th dimension
* @endcode
* that represents number of padded values at every dimension
* starting from the first one. The rest of dimensions won't
* be padded.
* @param value Value to be padded. Defaults to zero.
* @param type Padding type: 'constant', 'reflect'
* @param input_dims Torch's parameter. If @p input_dims is not equal to the
* actual input dimensionality then the `[0]th` dimension
* is considered as a batch dimension and @p paddings are shifted
* to a one dimension. Defaults to `-1` that means padding
* corresponding to @p paddings.
*/
class CV_EXPORTS PaddingLayer : public Layer
{
public:
static Ptr<PaddingLayer> create(const LayerParams& params);
};
/* Activations */
class CV_EXPORTS ActivationLayer : public Layer
{
public:
virtual void forwardSlice(const float* src, float* dst, int len,
size_t outPlaneSize, int cn0, int cn1) const = 0;
};
class CV_EXPORTS ReLULayer : public ActivationLayer
{
public:
float negativeSlope;
static Ptr<ReLULayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS ReLU6Layer : public ActivationLayer
{
public:
float minValue, maxValue;
static Ptr<ReLU6Layer> create(const LayerParams ¶ms);
};
class CV_EXPORTS ChannelsPReLULayer : public ActivationLayer
{
public:
static Ptr<Layer> create(const LayerParams& params);
};
class CV_EXPORTS ELULayer : public ActivationLayer
{
public:
static Ptr<ELULayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS TanHLayer : public ActivationLayer
{
public:
static Ptr<TanHLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS SigmoidLayer : public ActivationLayer
{
public:
static Ptr<SigmoidLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS BNLLLayer : public ActivationLayer
{
public:
static Ptr<BNLLLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS AbsLayer : public ActivationLayer
{
public:
static Ptr<AbsLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS PowerLayer : public ActivationLayer
{
public:
float power, scale, shift;
static Ptr<PowerLayer> create(const LayerParams ¶ms);
};
/* Layers used in semantic segmentation */
class CV_EXPORTS CropLayer : public Layer
{
public:
int startAxis;
std::vector<int> offset;
static Ptr<CropLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS EltwiseLayer : public Layer
{
public:
static Ptr<EltwiseLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS BatchNormLayer : public ActivationLayer
{
public:
bool hasWeights, hasBias;
float epsilon;
static Ptr<BatchNormLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS MaxUnpoolLayer : public Layer
{
public:
Size poolKernel;
Size poolPad;
Size poolStride;
static Ptr<MaxUnpoolLayer> create(const LayerParams ¶ms);
};
class CV_EXPORTS ScaleLayer : public Layer
{
public:
bool hasBias;
int axis;
static Ptr<ScaleLayer> create(const LayerParams& params);
};
class CV_EXPORTS ShiftLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams& params);
};
class CV_EXPORTS PriorBoxLayer : public Layer
{
public:
static Ptr<PriorBoxLayer> create(const LayerParams& params);
};
class CV_EXPORTS ReorgLayer : public Layer
{
public:
static Ptr<ReorgLayer> create(const LayerParams& params);
};
class CV_EXPORTS RegionLayer : public Layer
{
public:
static Ptr<RegionLayer> create(const LayerParams& params);
};
class CV_EXPORTS DetectionOutputLayer : public Layer
{
public:
static Ptr<DetectionOutputLayer> create(const LayerParams& params);
};
/**
* @brief \f$ L_p \f$ - normalization layer.
* @param p Normalization factor. The most common `p = 1` for \f$ L_1 \f$ -
* normalization or `p = 2` for \f$ L_2 \f$ - normalization or a custom one.
* @param eps Parameter \f$ \epsilon \f$ to prevent a division by zero.
* @param across_spatial If true, normalize an input across all non-batch dimensions.
* Otherwise normalize an every channel separately.
*
* Across spatial:
* @f[
* norm = \sqrt[p]{\epsilon + \sum_{x, y, c} |src(x, y, c)|^p } \\
* dst(x, y, c) = \frac{ src(x, y, c) }{norm}
* @f]
*
* Channel wise normalization:
* @f[
* norm(c) = \sqrt[p]{\epsilon + \sum_{x, y} |src(x, y, c)|^p } \\
* dst(x, y, c) = \frac{ src(x, y, c) }{norm(c)}
* @f]
*
* Where `x, y` - spatial coordinates, `c` - channel.
*
* An every sample in the batch is normalized separately. Optionally,
* output is scaled by the trained parameters.
*/
class CV_EXPORTS NormalizeBBoxLayer : public Layer
{
public:
float pnorm, epsilon;
CV_DEPRECATED_EXTERNAL bool acrossSpatial;
static Ptr<NormalizeBBoxLayer> create(const LayerParams& params);
};
/**
* @brief Resize input 4-dimensional blob by nearest neighbor or bilinear strategy.
*
* Layer is used to support TensorFlow's resize_nearest_neighbor and resize_bilinear ops.
*/
class CV_EXPORTS ResizeLayer : public Layer
{
public:
static Ptr<ResizeLayer> create(const LayerParams& params);
};
/**
* @brief Bilinear resize layer from https://github.com/cdmh/deeplab-public
*
* It differs from @ref ResizeLayer in output shape and resize scales computations.
*/
class CV_EXPORTS InterpLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams& params);
};
class CV_EXPORTS ProposalLayer : public Layer
{
public:
static Ptr<ProposalLayer> create(const LayerParams& params);
};
class CV_EXPORTS CropAndResizeLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams& params);
};
//! @}
//! @}
CV__DNN_INLINE_NS_END
}
}
#endif