forked from tensorpack/tensorpack
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist-addition.py
executable file
·271 lines (225 loc) · 10.5 KB
/
mnist-addition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: mnist-addition.py
# Author: Yuxin Wu
import cv2
import numpy as np
import tensorflow as tf
import os
import argparse
from tensorpack import *
from tensorpack.dataflow import dataset
from tensorpack.tfutils import optimizer, summary, gradproc
IMAGE_SIZE = 42
WARP_TARGET_SIZE = 28
HALF_DIFF = (IMAGE_SIZE - WARP_TARGET_SIZE) // 2
def sample(img, coords):
"""
Args:
img: bxhxwxc
coords: bxh2xw2x2. each coordinate is (y, x) integer.
Out of boundary coordinates will be clipped.
Return:
bxh2xw2xc image
"""
shape = img.get_shape().as_list()[1:] # h, w, c
batch = tf.shape(img)[0]
shape2 = coords.get_shape().as_list()[1:3] # h2, w2
assert None not in shape2, coords.get_shape()
max_coor = tf.constant([shape[0] - 1, shape[1] - 1], dtype=tf.float32)
coords = tf.clip_by_value(coords, 0., max_coor) # borderMode==repeat
coords = tf.to_int32(coords)
batch_index = tf.range(batch, dtype=tf.int32)
batch_index = tf.reshape(batch_index, [-1, 1, 1, 1])
batch_index = tf.tile(batch_index, [1, shape2[0], shape2[1], 1]) # bxh2xw2x1
indices = tf.concat([batch_index, coords], axis=3) # bxh2xw2x3
sampled = tf.gather_nd(img, indices)
return sampled
@layer_register(log_shape=True)
def GridSample(inputs, borderMode='repeat'):
"""
Sample the images using the given coordinates, by bilinear interpolation.
This was described in the paper:
`Spatial Transformer Networks <http://arxiv.org/abs/1506.02025>`_.
This is equivalent to `torch.nn.functional.grid_sample`,
up to some non-trivial coordinate transformation.
This implementation returns pixel value at pixel (1, 1) for a floating point coordinate (1.0, 1.0).
Note that this may not be what you need.
Args:
inputs (list): [images, coords]. images has shape NHWC.
coords has shape (N, H', W', 2), where each pair of the last dimension is a (y, x) real-value
coordinate.
borderMode: either "repeat" or "constant" (zero-filled)
Returns:
tf.Tensor: a tensor named ``output`` of shape (N, H', W', C).
"""
image, mapping = inputs
assert image.get_shape().ndims == 4 and mapping.get_shape().ndims == 4
input_shape = image.get_shape().as_list()[1:]
assert None not in input_shape, \
"Images in GridSample layer must have fully-defined shape"
assert borderMode in ['repeat', 'constant']
orig_mapping = mapping
mapping = tf.maximum(mapping, 0.0)
lcoor = tf.floor(mapping)
ucoor = lcoor + 1
diff = mapping - lcoor
neg_diff = 1.0 - diff # bxh2xw2x2
lcoory, lcoorx = tf.split(lcoor, 2, 3)
ucoory, ucoorx = tf.split(ucoor, 2, 3)
lyux = tf.concat([lcoory, ucoorx], 3)
uylx = tf.concat([ucoory, lcoorx], 3)
diffy, diffx = tf.split(diff, 2, 3)
neg_diffy, neg_diffx = tf.split(neg_diff, 2, 3)
ret = tf.add_n([sample(image, lcoor) * neg_diffx * neg_diffy,
sample(image, ucoor) * diffx * diffy,
sample(image, lyux) * neg_diffy * diffx,
sample(image, uylx) * diffy * neg_diffx], name='sampled')
if borderMode == 'constant':
max_coor = tf.constant([input_shape[0] - 1, input_shape[1] - 1], dtype=tf.float32)
mask = tf.greater_equal(orig_mapping, 0.0)
mask2 = tf.less_equal(orig_mapping, max_coor)
mask = tf.logical_and(mask, mask2) # bxh2xw2x2
mask = tf.reduce_all(mask, [3]) # bxh2xw2 boolean
mask = tf.expand_dims(mask, 3)
ret = ret * tf.cast(mask, tf.float32)
return tf.identity(ret, name='output')
class Model(ModelDesc):
def inputs(self):
return [tf.placeholder(tf.float32, (None, IMAGE_SIZE, IMAGE_SIZE, 2), 'input'),
tf.placeholder(tf.int32, (None,), 'label')]
def build_graph(self, image, label):
xys = np.array([(y, x, 1) for y in range(WARP_TARGET_SIZE)
for x in range(WARP_TARGET_SIZE)], dtype='float32')
xys = tf.constant(xys, dtype=tf.float32, name='xys') # p x 3
image = image / 255.0 - 0.5 # bhw2
def get_stn(image):
stn = (LinearWrap(image)
.AvgPooling('downsample', 2)
.Conv2D('conv0', 20, 5, padding='VALID')
.MaxPooling('pool0', 2)
.Conv2D('conv1', 20, 5, padding='VALID')
.FullyConnected('fc1', 32)
.FullyConnected('fct', 6, activation=tf.identity,
kernel_initializer=tf.constant_initializer(),
bias_initializer=tf.constant_initializer([1, 0, HALF_DIFF, 0, 1, HALF_DIFF]))())
# output 6 parameters for affine transformation
stn = tf.reshape(stn, [-1, 2, 3], name='affine') # bx2x3
stn = tf.reshape(tf.transpose(stn, [2, 0, 1]), [3, -1]) # 3 x (bx2)
coor = tf.reshape(tf.matmul(xys, stn),
[WARP_TARGET_SIZE, WARP_TARGET_SIZE, -1, 2])
coor = tf.transpose(coor, [2, 0, 1, 3], 'sampled_coords') # b h w 2
sampled = GridSample('warp', [image, coor], borderMode='constant')
return sampled
with argscope([Conv2D, FullyConnected], activation=tf.nn.relu):
with tf.variable_scope('STN1'):
sampled1 = get_stn(image)
with tf.variable_scope('STN2'):
sampled2 = get_stn(image)
# For visualization in tensorboard
with tf.name_scope('visualization'):
padded1 = tf.pad(sampled1, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]])
padded2 = tf.pad(sampled2, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]])
img_orig = tf.concat([image[:, :, :, 0], image[:, :, :, 1]], 1) # b x 2h x w
transform1 = tf.concat([padded1[:, :, :, 0], padded1[:, :, :, 1]], 1)
transform2 = tf.concat([padded2[:, :, :, 0], padded2[:, :, :, 1]], 1)
stacked = tf.concat([img_orig, transform1, transform2], 2, 'viz')
tf.summary.image('visualize',
tf.expand_dims(stacked, -1), max_outputs=30)
sampled = tf.concat([sampled1, sampled2], 3, 'sampled_concat')
logits = (LinearWrap(sampled)
.FullyConnected('fc1', 256, activation=tf.nn.relu)
.FullyConnected('fc2', 128, activation=tf.nn.relu)
.FullyConnected('fct', 19, activation=tf.identity)())
tf.nn.softmax(logits, name='prob')
cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
cost = tf.reduce_mean(cost, name='cross_entropy_loss')
wrong = tf.to_float(tf.logical_not(tf.nn.in_top_k(logits, label, 1)), name='incorrect_vector')
summary.add_moving_summary(tf.reduce_mean(wrong, name='train_error'))
wd_cost = tf.multiply(1e-5, regularize_cost('fc.*/W', tf.nn.l2_loss),
name='regularize_loss')
summary.add_moving_summary(cost, wd_cost)
return tf.add_n([wd_cost, cost], name='cost')
def optimizer(self):
lr = tf.get_variable('learning_rate', initializer=5e-4, trainable=False)
opt = tf.train.AdamOptimizer(lr, epsilon=1e-3)
return optimizer.apply_grad_processors(
opt, [
gradproc.ScaleGradient(('STN.*', 0.1)),
gradproc.SummaryGradient()])
def get_data(isTrain):
ds = dataset.Mnist('train' if isTrain else 'test')
# create augmentation for both training and testing
augs = [
imgaug.MapImage(lambda x: x * 255.0),
imgaug.RandomResize((0.7, 1.2), (0.7, 1.2)),
imgaug.RotationAndCropValid(45),
imgaug.RandomPaste((IMAGE_SIZE, IMAGE_SIZE)),
imgaug.SaltPepperNoise(white_prob=0.01, black_prob=0.01)
]
ds = AugmentImageComponent(ds, augs)
ds = JoinData([ds, ds])
# stack the two digits into two channels, and label it with the sum
ds = MapData(ds, lambda dp: [np.stack([dp[0], dp[2]], axis=2), dp[1] + dp[3]])
ds = BatchData(ds, 128)
return ds
def view_warp(modelpath):
pred = OfflinePredictor(PredictConfig(
session_init=get_model_loader(modelpath),
model=Model(),
input_names=['input'],
output_names=['visualization/viz', 'STN1/affine', 'STN2/affine']))
xys = np.array([[0, 0, 1],
[WARP_TARGET_SIZE, 0, 1],
[WARP_TARGET_SIZE, WARP_TARGET_SIZE, 1],
[0, WARP_TARGET_SIZE, 1]], dtype='float32')
def draw_rect(img, affine, c, offset=[0, 0]):
a = np.transpose(affine) # 3x2
a = (np.matmul(xys, a) + offset).astype('int32')
cv2.line(img, tuple(a[0][::-1]), tuple(a[1][::-1]), c)
cv2.line(img, tuple(a[1][::-1]), tuple(a[2][::-1]), c)
cv2.line(img, tuple(a[2][::-1]), tuple(a[3][::-1]), c)
cv2.line(img, tuple(a[3][::-1]), tuple(a[0][::-1]), c)
ds = get_data(False)
ds.reset_state()
for k in ds:
img, label = k
outputs, affine1, affine2 = pred(img)
for idx, viz in enumerate(outputs):
viz = cv2.cvtColor(viz, cv2.COLOR_GRAY2BGR)
# Here we assume the second branch focuses on the first digit
draw_rect(viz, affine2[idx], (0, 0, 255))
draw_rect(viz, affine1[idx], (0, 0, 255), offset=[IMAGE_SIZE, 0])
cv2.imwrite('{:03d}.png'.format(idx), (viz + 0.5) * 255)
break
def get_config():
logger.auto_set_dir()
dataset_train, dataset_test = get_data(True), get_data(False)
steps_per_epoch = len(dataset_train) * 5
return TrainConfig(
model=Model(),
data=QueueInput(dataset_train),
callbacks=[
ModelSaver(),
InferenceRunner(dataset_test,
[ScalarStats('cost'), ClassificationError()]),
ScheduledHyperParamSetter('learning_rate', [(200, 1e-4)])
],
steps_per_epoch=steps_per_epoch,
max_epoch=500,
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', help='comma separated list of GPU(s) to use.')
parser.add_argument('--load', help='load model')
parser.add_argument('--view', action='store_true')
args = parser.parse_args()
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.view:
view_warp(args.load)
else:
config = get_config()
if args.load:
config.session_init = SaverRestore(args.load)
launch_train_with_config(config, SimpleTrainer())