-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy path_arg_utls.py
110 lines (85 loc) · 4.07 KB
/
_arg_utls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import argparse
import os
from typing import Sequence, Union
os.environ['JAX_TRACEBACK_FILTERING'] = 'off'
__all__ = [
'MyArgumentParser'
]
def _disable_gpu_memory_preallocation(release_memory: bool = True):
"""Disable pre-allocating the GPU memory.
This disables the preallocation behavior. JAX will instead allocate GPU memory as needed,
potentially decreasing the overall memory usage. However, this behavior is more prone to
GPU memory fragmentation, meaning a JAX program that uses most of the available GPU memory
may OOM with preallocation disabled.
Args:
release_memory: bool. Whether we release memory during the computation.
"""
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'false'
if release_memory:
os.environ['XLA_PYTHON_CLIENT_ALLOCATOR'] = 'platform'
def _enable_gpu_memory_preallocation():
"""Disable pre-allocating the GPU memory."""
os.environ['XLA_PYTHON_CLIENT_PREALLOCATE'] = 'true'
os.environ.pop('XLA_PYTHON_CLIENT_ALLOCATOR', None)
def set_gpu_preallocation(mode: Union[float, bool]):
"""GPU memory allocation.
If preallocation is enabled, this makes JAX preallocate ``percent`` of the total GPU memory,
instead of the default 75%. Lowering the amount preallocated can fix OOMs that occur when the JAX program starts.
"""
if mode is False:
_disable_gpu_memory_preallocation()
return
if mode is True:
_enable_gpu_memory_preallocation()
return
assert isinstance(mode, float) and 0. <= mode < 1., f'GPU memory preallocation must be in [0., 1.]. But got {mode}.'
os.environ['XLA_PYTHON_CLIENT_MEM_FRACTION'] = str(mode)
def set_gpu_device(device_ids: Union[str, int, Sequence[int]]):
if isinstance(device_ids, int):
device_ids = str(device_ids)
elif isinstance(device_ids, (tuple, list)):
device_ids = ','.join([str(d) for d in device_ids])
elif isinstance(device_ids, str):
device_ids = device_ids
else:
raise ValueError
os.environ['CUDA_VISIBLE_DEVICES'] = device_ids
def _set_device(parser) -> argparse.ArgumentParser:
return parser
def _add_training_method(parser) -> argparse.ArgumentParser:
return parser
class MyArgumentParser(argparse.ArgumentParser):
def __init__(self, *args, **kwargs):
super(MyArgumentParser, self).__init__(*args, **kwargs)
self.add_argument('--devices', type=str, default='0', help='The GPU device ids.')
self.add_argument("--memory_preallocate", type=int, default=1, help="The ratio for network simulation.")
self.add_argument("--method", type=str, default='bptt', help="Training method.")
# device setting
args, _ = self.parse_known_args()
set_gpu_device(args.devices)
set_gpu_preallocation(0.99)
if args.memory_preallocate == 1:
_disable_gpu_memory_preallocation()
# training algorithms
if args.method != 'bptt':
self.add_argument("--diag_normalize", type=int, default=0, choices=[0, 1, 2],
help="Normalize the diagonal jacobian (0 - None, 1 - True, 2 - False).")
self.add_argument("--diag_jacobian", type=str, default='exact', help="Normalize the diagonal jacobian.")
if args.method != 'diag':
self.add_argument("--etrace_decay", type=float, default=0.9, help="The time constant of eligibility trace ")
self.add_argument("--num_snap", type=int, default=0, help="The number of snap shoot.")
self.add_argument("--snap_freq", type=int, default=None, help="The frequency of snap shoot.")