-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathMST_Continuous_PsychoPy_80x4.py
586 lines (497 loc) · 24.2 KB
/
MST_Continuous_PsychoPy_80x4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
#!/usr/bin/env python
from __future__ import print_function, division
"""
Mnemonic Similarity Task in PsychoPy
Copyright 2017, Craig Stark
Forked from v0.95 of the C++ version of MST on July 28, 2017
8/9/17: First solidly-working version (standard study-test)
1/6/18: Forked off to make the continuous version. This will work well so
long as you're not trying to use multiple sets in one run. It works off
of data files generated by some Matlab code in LagGenerator. That code
creates text files that describe what stimuli should come up when. Here,
we just follow that order of stimuli.
Does not allow using portions of each set (the subset option in the normal
version).
Currently, we have 2 "all-short" variants in place that are slightly different
in makeup.
Expects to have the standard Set N stimulus directories and to use only the
stimuli in here (limiting the length of the run we can do a bit)
Assumes the # of repeat and lure pairs are the same
Includes self-paced and other edits from 1/7 MST_Psychopy.py
1/7/21 (CELS): Log file output bugs fixed
6/1/23 (CELS): Updated for current PsychoPy / Python3
6/2/23 (CELS): Customized for the Eich lab fMRI experiment that uses the
320-length order files. These are different in that there are no separate foils
(not needed really), 100 lures, and 60 repeats.
- One thing that's a bit of a kludge here is that the prior versions assumed a
max of 64 per trial type and here we are using 100 lures. Ideally, the code in
setup_list_permuted would detect this from the order file and allocate
accordingly. The original used 64 here as a fixed length of each list. But,
time is short and I've just manually fixed the lure length to 100 to get things
up and going.
- Also, set the default timing to 3 + 0.5s
6/19/23 (CELS): Fixed to allow 100 lures rather than 99.
- Fixed Corr/RT header bug
6/26/23 (CELS): Set to split into 4 blocks
"""
"""
TBD:
- Touch box responses
"""
import numpy as np
import csv
import os
from psychopy import visual, core, data, tools, event
from psychopy import gui
from datetime import datetime
from scipy.stats import norm
def get_parameters(skip_gui=False):
# Setup my global parameters
try:#try to get a previous parameters file
param_settings = tools.filetools.fromFile('lastParams_MSTCont.pickle')
last_entry=param_settings[12] # Make sure we have enough entries in here
except:
param_settings = [1234,3.0,0.5,'Set_320',1,'1','1VC','2B','3NM',False,False,-1,['1']]
#print(param_settings)
if not skip_gui:
param_dialog = gui.Dlg('Experimental parameters')
param_dialog.addField('ID',param_settings[0],tip='Must be numeric only')
param_dialog.addField('Duration',param_settings[1])
param_dialog.addField('ISI',param_settings[2])
param_dialog.addField('Lag set', choices=['AllShort_Set1','AllShort_Set2','Set_80x4'],initial=param_settings[3])
param_dialog.addField('Order',param_settings[4])
param_dialog.addField('Set', choices=['1','2','3','4','5','6','C','D','E','F','ScC'],initial=param_settings[5])
param_dialog.addField('Resp 1 keys',param_settings[6])
param_dialog.addField('Resp 2 keys',param_settings[7])
param_dialog.addField('Resp 3 keys',param_settings[8])
param_dialog.addField('Self-Paced', initial=param_settings[9])
param_dialog.addField('Two-Choice', initial=param_settings[10])
param_dialog.addField('Randomization',param_settings[11],tip='-1=Use ID, 0=Use time, >0 = Use specific seed')
param_dialog.addField('Block', choices=['1','2','3','4'],initial=param_settings[12])
param_settings=param_dialog.show()
#print(ok_data)
if param_dialog.OK:
tools.filetools.toFile('lastParams_MSTCont.pickle', param_settings)
params = {'ID': param_settings[0],
'Duration': param_settings[1],
'ISI':param_settings[2],
'LagSet': param_settings[3],
'Order':param_settings[4],
'Set': param_settings[5],
'Resp1Keys':param_settings[6],
'Resp2Keys':param_settings[7],
'Resp3Keys':param_settings[8],
'SelfPaced': param_settings[9],
'TwoChoice': param_settings[10],
'Randomization':param_settings[11],
'Block': param_settings[12]}
else:
core.quit()
else:
params = {'ID': param_settings[0],
'Duration': param_settings[1],
'ISI':param_settings[2],
'LagSet': param_settings[3],
'Order':param_settings[4],
'Set': param_settings[5],
'Resp1Keys':param_settings[6],
'Resp2Keys':param_settings[7],
'Resp3Keys':param_settings[8],
'SelfPaced': param_settings[9],
'TwoChoice': param_settings[10],
'Randomization':param_settings[11],
'Block': param_settings[12] }
return params
def check_files(SetName):
"""
SetName should be something like "C" or "1"
Checks to make sure there are the right #of images in the image directory
Loads the lure bin ratings into the global set_bins list and returns this
"""
import glob
import os
#print(SetName)
#print(P_N_STIM_PER_LIST)
bins = [] # Clear out any existing items in the bin list
# Load the bin file
with open("Set"+str(SetName)+" bins.txt","r") as bin_file:
reader=csv.reader(bin_file,delimiter='\t')
for row in reader:
if int(row[0]) > 192:
raise ValueError('Stimulus number ({0}) too large - not in 1-192 in binfile'.format(row[0]))
if int(row[0]) < 1:
raise ValueError('Stimulus number ({0}) too small - not in 1-192 in binfile'.format(row[0]))
bins.append(int(row[1]))
if len(bins) != 192:
raise ValueError('Did not read correct number of bins in binfile')
# Check the stimulus directory
img_list=glob.glob("Set " +str(SetName) + os.sep + '*.jpg')
if len(img_list) < 384:
raise ValueError('Not enough files in stimulus directory {0}'.format("Set " +str(SetName) + os.sep + '*.jpg'))
for i in range(1,193):
if not os.path.isfile("Set " +str(SetName) + os.sep + '{0:03}'.format(i) + 'a.jpg'):
raise ValueError('Cannot find: ' + "Set " +str(SetName) + os.sep + '{0:03}'.format(i) + 'a.jpg')
if not os.path.isfile("Set " +str(SetName) + os.sep + '{0:03}'.format(i) + 'b.jpg'):
raise ValueError('Cannot find: ' + "Set " +str(SetName) + os.sep + '{0:03}'.format(i) + 'b.jpg')
return bins
def load_and_decode_order(repeat_list,lure_list,foil_list,
lag_set='AllShort_Set2',order=1,base_dir='LagGenerator',
stim_set='1',verbose=False):
"""
Loads the order text file and decodes this into a list of image names,
conditions, lags, etc.
lag_set: Directory name with the order files
order: Which order file to use (numeric index)
base_dir: Directory that holds the set of lag sets
stim_set = Set we're using (e.g., '1', or 'C')
repeat_list,lure_list,foil_list: Lists (np.arrays actually) created by setup_list_permuted
In the order files files we have 2 columns:
1st column is the stimulus type + number:
Offset_1R = 0; % 1-100 1st of repeat pair
Offset_2R = 100; % 101-200 2nd of repeat pair
Offset_1L = 200; % 201-300 1st of lure pair
Offset_2L = 300; % 301-400 2nd of lure pair
Offset_Foil = 400; % 401+ Foil
2nd column is the lag + 500 (-1 for 1st and foil)
Returns:
lists / arrays that are all N-trials long
type_code: 0=1st of repeat
1=2nd of repeat
2=1st of lure
3=2nd of lure
4=foil
ideal_resp: 0=old
1=similar
2=new
lag: Lag for this item (-1=1st/foil, 0=adjacent, N=items between)
fnames: Actual filename of image to be shown
"""
#verbose=True
fname=base_dir + os.sep + lag_set + os.sep + "order_{0}.txt".format(order)
if verbose:
print('loading',fname)
fdata=np.genfromtxt(fname,dtype=int,delimiter=',')
lag = fdata[:,1]
lag[lag != -1] = lag[lag != -1] - 500
type_code = (fdata[:,0]-1)//100 #Note, this works b/c we loaded the data as ints
stim_index = fdata[:,0]-100*type_code
ideal_resp = np.zeros_like(stim_index)
ideal_resp[type_code==4]=2
ideal_resp[type_code==0]=2
ideal_resp[type_code==2]=2
ideal_resp[type_code==1]=0
ideal_resp[type_code==3]=1
fnames=[]
dirname='Set {0}{1}'.format(stim_set, os.sep) # Get us to the directory
for i in range(len(type_code)):
stimfile='UNKNOWN'
if verbose:
print(i,type_code[i],stim_index[i]-1)
if type_code[i]==0 or type_code[i]==1:
stimfile='{0:03}a.jpg'.format(repeat_list[stim_index[i]-1])
elif type_code[i]==2:
stimfile='{0:03}a.jpg'.format(lure_list[stim_index[i]-1])
elif type_code[i]==3:
stimfile='{0:03}b.jpg'.format(lure_list[stim_index[i]-1])
elif type_code[i]==4:
stimfile='{0:03}a.jpg'.format(foil_list[stim_index[i]-1])
fnames.append(dirname+stimfile)
return (type_code,ideal_resp,lag,fnames)
def setup_list_permuted(set_bins):
"""
set_bins = list of bin values for each of the 192 stimuli -- set specific
Assumes check_files() has been run so we have the bin numbers for each stimulus
Returns lists with the image numbers for each stimulus type (study, repeat...)
in the to-be-used permuted order. Full 64 given for all. This will get
cut down and randomized in create_order()
6/2/23: Revised to allow for 100 lures in an imbalanced design
"""
if len(set_bins) != 192:
raise ValueError('Set bin length is not the same as the stimulus set length (192)')
# Figure the image numbers for the lure bins
lure1=np.where(set_bins == 1)[0] + 1
lure2=np.where(set_bins == 2)[0] + 1
lure3=np.where(set_bins == 3)[0] + 1
lure4=np.where(set_bins == 4)[0] + 1
lure5=np.where(set_bins == 5)[0] + 1
# Permute these
lure1 = np.random.permutation(lure1)
lure2 = np.random.permutation(lure2)
lure3 = np.random.permutation(lure3)
lure4 = np.random.permutation(lure4)
lure5 = np.random.permutation(lure5)
maxlures=100
lures = np.empty(maxlures,dtype=int)
# Make the Lure list to go L1, 2, 3, 4, 5, 1, 2 ... -- 64 total of them (max)
lure_count = np.zeros(5,dtype=int)
nonlures = np.arange(1,193,dtype=int)
for i in range(maxlures):
if i % 5 == 0:
lures[i]=lure1[lure_count[0]]
lure_count[0]+=1
elif i % 5 == 1:
lures[i]=lure2[lure_count[1]]
lure_count[1]+=1
elif i % 5 == 2:
lures[i]=lure3[lure_count[2]]
lure_count[2]+=1
elif i % 5 == 3:
lures[i]=lure4[lure_count[3]]
lure_count[3]+=1
elif i % 5 == 4:
lures[i]=lure5[lure_count[4]]
lure_count[4]+=1
nonlures=np.delete(nonlures,np.argwhere(nonlures == lures[i]))
# Randomize the non-lures and split into 64-length repeat, whatever left goes to foils
nonlures=np.random.permutation(nonlures)
repeats = nonlures[0:64]
foils = nonlures[64:]
# At this point, we're full 64-item length lists for everything
# break this down into the right size
#repeatstim=repeats[0:set_size]
#lurestim=lures[0:set_size]
#foilstim=foils[0:set_size]
# Our lures are still in L1, 2, 3, 4, 5, 1, 2, ... order -- fix that
#lurestim=np.random.permutation(lurestim)
return (repeats,lures,foils)
def decode_response(params,response):
if params['Resp1Keys'].lower().find(response.lower()) >= 0:
respcode = 1
elif params['Resp2Keys'].lower().find(response.lower()) >= 0:
respcode = 2
elif params['Resp3Keys'].lower().find(response.lower()) >= 0:
respcode = 3
elif response == '5': # Scanner trigger
respcode = 99
elif response in ['escape','esc']:
respcode = -1
return respcode
def show_task(params,fnames,type_code,lag,set_bins,nblocks=4):
"""
params: structure with all the expeirmental parameters
fnames: list of filenames to show in order (from load_and_decode_order)
type_code: Trial type numeric code (see load_and_decode_order)
lag: # of intervening items b/n 1st and second (from load_and_decode_order)
set_bins: lure-bin number (only relevant if it's a lure)
"""
global log, win
total_trials=len(fnames)
trials_per_block=total_trials // nblocks
start_index=trials_per_block * (int(params['Block']) - 1)
print(total_trials,trials_per_block,start_index)
if params['TwoChoice']==True:
instructions1=visual.TextStim(win,text="Old or New?",pos=(0,0.9),
color=(-1,-1,-1),wrapWidth=1.75,anchorHoriz='center',anchorVert='center')
else:
instructions1=visual.TextStim(win,text="Old, Similar, or New?",pos=(0,0.9),
color=(-1,-1,-1),wrapWidth=1.75,anchorHoriz='center',anchorVert='center')
instructions2=visual.TextStim(win,text="Press the spacebar to begin",pos=(0,-0.25),
color=(-0.5,-0.5,-0.5),wrapWidth=1.75,anchorHoriz='center',anchorVert='center')
instructions1.draw()
instructions2.draw()
win.flip()
key = event.waitKeys(keyList=['space','5','esc','escape'])
if key and key[0] in ['escape','esc']:
print('Escape hit - bailing')
return -1
TLF_trials = np.zeros(3) # Number of trials of each type we have a response to
TLF_response_matrix = np.zeros((3,3)) # Rows = O,(S),N Cols = T,L,R
lure_bin_matrix = np.zeros((4,5)) # Rows: O,S,N,NR Cols=Lure bins
log.write('Task started at {0}\n'.format(str(datetime.now())))
log.write('Trial,Stim,Cond,Lag,LBin,StartT,Resp,Corr,RT\n')
local_timer = core.MonotonicClock()
duration = params['Duration']
isi = params['ISI']
ncorrect = 0
log.flush()
valid_keys = list(params['Resp1Keys'].lower()) + list(params['Resp2Keys'].lower()) + list(params['Resp3Keys'].lower()) + ['esc','escape']
for trial in range(trials_per_block):
stim_index=trial+start_index
print(trial,stim_index,fnames[stim_index])
if params['SelfPaced']:
t1=local_timer.getTime()
else:
t1 = trial * (duration + isi) # Time when this trial should have started
stim_path = fnames[stim_index]
stim_number = int(stim_path[-8:-5])
log.write('{0},{1},{2},{3},{4},{5:.3f},'.format(stim_index+1,fnames[stim_index],
type_code[stim_index],lag[stim_index],set_bins[stim_number-1],local_timer.getTime()))
log.flush()
image = visual.ImageStim(win, image=fnames[stim_index])
image.draw()
instructions1.draw()
win.flip()
response = 0
correct = 0
RT=0
key = event.waitKeys(duration,keyList=valid_keys) # Wait our normal duration
if key and key[0] in ['escape','esc']:
print('Escape hit - bailing')
log.write('\nEscape key aborted experiment\n')
return -1
elif key:
RT=local_timer.getTime() - t1
core.wait(t1 + duration - local_timer.getTime()) # Wait the remainder of the trial
win.flip() # Clear the screen for the ISI
if params['SelfPaced'] and (RT < 0.05): # Continue waiting until we get something
key = event.waitKeys(keyList=valid_keys)
RT=local_timer.getTime() - t1
if params['SelfPaced']:
core.wait(isi)
else: # Do the ISI locking to the clock cleaning and allow a response in it if we don't have one
while local_timer.getTime() < (t1 + duration + isi):
if (RT < 0.05):
key = event.getKeys(keyList=valid_keys)
if key:
RT=local_timer.getTime() - t1
if RT > 0.05: # We have a response
response = decode_response(params,key[0])
# Increment the appropriate trial type counter (for count of # they responded to)
if type_code[stim_index]==1: # Repeatitions -- 2nd of real repeat
TLF_trials[0] += 1
trial_type = 1
elif type_code[stim_index]==3: # Lure 2nd presentations
TLF_trials[1] += 1
trial_type = 2
else: # All others -- 1st of 2 and extra foils are firsts
TLF_trials[2] += 1
trial_type = 3
TLF_response_matrix[response-1,trial_type-1] += 1 # Increment the response x type matrix as needed
if params['TwoChoice']==True: # Old/new variant
if trial_type == 1 and response == 1: # Hit
correct=1
elif trial_type == 2 and response == 2: #Lure-CR
correct=1
elif trial_type == 3 and response == 2: #CR
correct=1
else: #Old/similar/new variant
if trial_type == 1 and response == 1: # Hit
correct=1
elif trial_type == 2 and response == 2: #Lure-Similar
correct=1
elif trial_type == 3 and response == 3: #CR
correct=1
log.write('{0},{1},{2:.3f}\n'.format(response,correct,RT))
else:
log.write('NA\n')
if type_code[stim_index] == 3: # A 2nd of lure pair - Take care of the lure-bin details
bin_index = set_bins[stim_number-1] - 1 # Make it 0-indexed
resp_index = response - 1 # Make this 0-indexed
if resp_index == -1:
resp_index = 3 # Loop the no-responses into the 4th entry here
lure_bin_matrix[resp_index,bin_index] += 1
win.flip() # Clear the screen for the ISI
while local_timer.getTime() < (t1 + duration + isi):
key = event.getKeys()
#print(key)
if key and key[0] in ['escape','esc']:
print('Escape hit - bailing')
log.write('\nEscape key aborted experiment\n')
return -1
ncorrect += correct
# Print some summary stats to the log file
log.write('\nValid responses:\nTargets, {0:.0f}\nlures, {1:.0f}\nfoils, {2:.0f}'.format(TLF_trials[0],TLF_trials[1],TLF_trials[2]))
log.write('\nCorrected rates\n')
log.write('\nRateMatrix,Targ,Lure,Foil\n')
# Fix up any no-response cell here so we don't divide by zero
TLF_trials[TLF_trials==0.0]=0.00001
log.write('Old,{0:.2f},{1:.2f},{2:.2f}\n'.format(
TLF_response_matrix[0,0] / TLF_trials[0],
TLF_response_matrix[0,1] / TLF_trials[1],
TLF_response_matrix[0,2] / TLF_trials[2]))
log.write('Similar,{0:.2f},{1:.2f},{2:.2f}\n'.format(
TLF_response_matrix[1,0] / TLF_trials[0],
TLF_response_matrix[1,1] / TLF_trials[1],
TLF_response_matrix[1,2] / TLF_trials[2]))
log.write('New,{0:.2f},{1:.2f},{2:.2f}\n'.format(
TLF_response_matrix[2,0] / TLF_trials[0],
TLF_response_matrix[2,1] / TLF_trials[1],
TLF_response_matrix[2,2] / TLF_trials[2]))
log.write('\nRaw counts')
log.write('\nRawRespMatrix,Targ,Lure,Foil\n')
log.write('Old,{0:.0f},{1:.0f},{2:.0f}\n'.format(TLF_response_matrix[0,0], TLF_response_matrix[0,1],TLF_response_matrix[0,2]))
log.write('Similar,{0:.0f},{1:.0f},{2:.0f}\n'.format(TLF_response_matrix[1,0], TLF_response_matrix[1,1],TLF_response_matrix[1,2]))
log.write('New,{0:.0f},{1:.0f},{2:.0f}\n'.format(TLF_response_matrix[2,0], TLF_response_matrix[2,1],TLF_response_matrix[2,2]))
log.write('\n\nLureRawRespMatrix,Bin1,Bin2,Bin3,Bin4,Bin5\n')
log.write('Old,{0:.0f},{1:.0f},{2:.0f},{3:.0f},{4:.0f}\n'.format(
lure_bin_matrix[0,0], lure_bin_matrix[0,1],lure_bin_matrix[0,2],lure_bin_matrix[0,3],lure_bin_matrix[0,4]))
log.write('Similar,{0:.0f},{1:.0f},{2:.0f},{3:.0f},{4:.0f}\n'.format(
lure_bin_matrix[1,0], lure_bin_matrix[1,1],lure_bin_matrix[1,2],lure_bin_matrix[1,3],lure_bin_matrix[1,4]))
log.write('New,{0:.0f},{1:.0f},{2:.0f},{3:.0f},{4:.0f}\n'.format(
lure_bin_matrix[2,0], lure_bin_matrix[2,1],lure_bin_matrix[2,2],lure_bin_matrix[2,3],lure_bin_matrix[2,4]))
log.write('NR,{0:.0f},{1:.0f},{2:.0f},{3:.0f},{4:.0f}\n'.format(
lure_bin_matrix[3,0], lure_bin_matrix[3,1],lure_bin_matrix[3,2],lure_bin_matrix[3,3],lure_bin_matrix[3,4]))
log.write('\nPercent-correct (corrected),{0:.2}\n'.format(ncorrect / TLF_trials.sum()))
log.write('Percent-correct (raw),{0:.2}\n'.format(ncorrect / len(fnames)))
hit_rate = TLF_response_matrix[0,0] / TLF_trials[0]
false_rate = TLF_response_matrix[0,2] / TLF_trials[2]
log.write('\nCorrected recognition (REC) (p(Old|Target)-p(Old|Foil)), {0:.2f}'.format(hit_rate - false_rate))
if params['TwoChoice']==True:
log.write('\nTwo-choice test metrics\n')
lure_rate = TLF_response_matrix[0,1] / TLF_trials[1]
if hit_rate == 0.0:
hit_rate = 0.5 / TLF_trials[0]
if false_rate == 0.0:
false_rate = 0.5 / TLF_trials[2]
if lure_rate == 0.0:
lure_rate = 0.5 / TLF_trials[1]
log.write('Endorsement rates')
log.write('Targets: {0:.2f}'.format(hit_rate))
log.write('Lures: {0:.2f}'.format(lure_rate))
log.write('Foils and Firsts: {0:.2f}'.format(false_rate))
dpTF = norm.ppf(hit_rate) - norm.ppf(false_rate)
dpTL = norm.ppf(hit_rate) - norm.ppf(lure_rate)
dpLF = norm.ppf(lure_rate) - norm.ppf(false_rate)
log.write("d' Target:Foil, {0:.2f}".format(dpTF))
log.write("d' Target:Lure, {0:.2f}".format(dpTL))
log.write("d' Lure:Foil, {0:.2f}".format(dpLF))
else:
log.write('\nThree-choice test metrics\n')
sim_lure_rate = TLF_response_matrix[1,1] / TLF_trials[1]
sim_foil_rate = TLF_response_matrix[1,2] / TLF_trials[2]
log.write('LDI,{0:.2f}'.format(sim_lure_rate - sim_foil_rate))
log.flush()
return 0
# ------------------------------------------------------------------------
# Main routine
params = get_parameters()
print(params)
# Set our random seed
if params['Randomization'] == -1:
seed = params['ID']
elif params['Randomization']==0:
seed = None
else:
seed = params['Randomization']
np.random.seed(seed)
# Get my log file going in append mode
log = open('MST_{0}.txt'.format(params['ID']),"a+")
log.write('MST Task\nStarted at {0}\n'.format(str(datetime.now())))
log.write('ID: {0}\n'.format(params['ID']))
log.write('Duration: {0}\n'.format(params['Duration']))
log.write('ISI: {0}\n'.format(params['ISI']))
log.write('Set: {0}\n'.format(params['Set']))
log.write('Lag set: {0}\n'.format(params['LagSet']))
log.write('Order: {0}\n'.format(params['Order']))
log.write('Respkeys: {0} {1} {2}\n'.format(params['Resp1Keys'],params['Resp1Keys'],params['Resp1Keys']))
log.write('Self-paced: {0}\n'.format(params['SelfPaced']))
log.write('Two-choice: {0}\n'.format(params['TwoChoice']))
log.write('Rnd-mode: {0} with seed {1}\n'.format(params['Randomization'],seed))
log.write('Raw params: {0}'.format(params))
log.write('\n\n')
log.flush()
# Load up the bin file and check the stimulus directory. Note, the set_bins
# is such that 001a/b.jpg will be first, 002a/b.jpg will be second, etc.
# So, row = stimulus filename number
set_bins = np.array(check_files(params['Set']))
# Figure out which stimuli will be shown in which conditions and order them
(repeat_list, lure_list, foil_list) = setup_list_permuted(set_bins)
# Load up the order file and decode it, creating all the needed vectors
(type_code,ideal_resp,lag,fnames)=load_and_decode_order(repeat_list,
lure_list,foil_list,lag_set=params['LagSet'],
order=params['Order'], stim_set=params['Set'])
win = visual.Window([800, 800], monitor='testMonitor',color='white')
show_task(params,fnames,type_code,lag,set_bins)
win.close()
log.close()
core.quit()