-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTC_nucleus_DBS.py
164 lines (130 loc) · 5.66 KB
/
TC_nucleus_DBS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
Created on Tue Feb 6 22:45:19 2024
@author: celinesoeiro
"""
import numpy as np
from tcm_params import TCM_model_parameters, coupling_matrix_normal, coupling_matrix_PD
from model_functions import izhikevich_dudt, izhikevich_dvdt, tm_synapse_eq
neuron_quantities = TCM_model_parameters()['neuron_quantities']
neuron_per_structure = TCM_model_parameters()['neuron_per_structure']
neuron_params = TCM_model_parameters()['neuron_paramaters']
currents = TCM_model_parameters()['currents_per_structure']
dt = TCM_model_parameters()['dt']
syn_params = TCM_model_parameters()['synapse_params_excitatory']
n_TC = neuron_quantities['TC']
vr = TCM_model_parameters()['vr']
vp = TCM_model_parameters()['vp']
W_N = coupling_matrix_normal()['weights']
W_TC_self = W_N['W_EE_tc']
W_TC_S = W_N['W_EE_tc_s']
W_TC_M = W_N['W_EE_tc_m']
W_TC_D = W_N['W_EE_tc_d']
W_TC_TR = W_N['W_EI_tc_tr']
W_TC_CI = W_N['W_EI_tc_ci']
W_PD = coupling_matrix_PD()['weights']
W_TC_self = W_PD['W_EE_tc']
W_TC_S = W_PD['W_EE_tc_s']
W_TC_M = W_PD['W_EE_tc_m']
W_TC_D = W_PD['W_EE_tc_d']
W_TC_TR = W_PD['W_EI_tc_tr']
W_TC_CI = W_PD['W_EI_tc_ci']
td_wl = TCM_model_parameters()['time_delay_within_layers']
td_bl = TCM_model_parameters()['time_delay_between_layers']
td_ct = TCM_model_parameters()['time_delay_cortex_thalamus']
td_tc = TCM_model_parameters()['time_delay_thalamus_cortex']
td_syn = TCM_model_parameters()['time_delay_synapse']
p = TCM_model_parameters()['synapse_total_params']
a_TC = neuron_params['a_TC']
b_TC = neuron_params['b_TC']
c_TC = neuron_params['c_TC']
d_TC = neuron_params['d_TC']
t_f_E = syn_params['t_f']
t_d_E = syn_params['t_d']
t_s_E = syn_params['t_s']
U_E = syn_params['U']
A_E = syn_params['distribution']
A_E_T_D = syn_params['distribution_T_D']
I_TC = currents['TC']
noise = TCM_model_parameters()['noise']
kisi_TC = noise['kisi_TC']
zeta_TC = noise['zeta_TC']
I_ps = TCM_model_parameters()['poisson_bg_activity']
I_ps_TC = I_ps['TC']
syn_fid = TCM_model_parameters()['synaptic_fidelity_layers']
TC_fid = syn_fid['TC']
affected_neurons = TCM_model_parameters()['neurons_connected_with_hyperdirect_neurons']
TC_affected = affected_neurons['TC']
def TC_nucleus(t, v_TC, u_TC, AP_TC, PSC_TC, PSC_S, PSC_M, PSC_D_T, PSC_TR, PSC_CI, PSC_T_D, R_TC_syn, u_TC_syn, I_TC_syn, I_dbs):
I_syn = np.zeros((1, n_TC))
I_syn_t = np.zeros((1, n_TC))
for tc in range(n_TC):
if (tc >= 10 and tc <= TC_affected):
dbs_I = 1*I_dbs[t - 1]
else:
dbs_I = 0
v_TC_aux = 1*v_TC[tc][t - 1]
u_TC_aux = 1*u_TC[tc][t - 1]
AP_TC_aux = 0
if (v_TC_aux >= vp + zeta_TC[tc][t - 1]):
AP_TC_aux = 1
AP_TC[tc][t] = t - 1
v_TC_aux = v_TC[tc][t]
v_TC[tc][t] = c_TC[0][tc]
u_TC[tc][t] = u_TC_aux + d_TC[0][tc]
else:
AP_TC[tc][t] = 0
AP_TC_aux = 0
# Self feedback - Inhibitory
coupling_TC_TC = W_TC_self[tc][0]*1*PSC_TC[0][t - td_wl - td_syn - 1]
# Coupling TC to S - Excitatory
coupling_TC_S = W_TC_S[tc][0]*1*PSC_S[0][t - td_ct - td_syn - 1]
# Coupling TC to M - Excitatory
coupling_TC_M = W_TC_M[tc][0]*1*PSC_M[0][t - td_ct - td_syn - 1]
# Coupling TC to D - Excitatory
coupling_TC_D = W_TC_D[tc][0]*1*PSC_D_T[0][t - td_ct - td_syn - 1]
# Coupling TC to CI - Inhibitory
coupling_TC_CI = W_TC_CI[tc][0]*1*PSC_CI[0][t - td_ct - td_syn - 1]
# Coupling TC to TR - Excitatory
coupling_TC_TR = W_TC_TR[tc][0]*1*PSC_TR[0][t - td_bl - td_syn - 1]
dv_TC = izhikevich_dvdt(v = v_TC_aux, u = u_TC_aux, I = I_TC[tc])
du_TC = izhikevich_dudt(v = v_TC_aux, u = u_TC_aux, a = a_TC[0][tc], b = b_TC[0][tc])
coupling_cortex = (coupling_TC_S + coupling_TC_M + coupling_TC_D + coupling_TC_CI)/n_TC
coupling_thalamus = (coupling_TC_TC + coupling_TC_TR)/n_TC
bg_activity = kisi_TC[tc][t - 1] + I_ps_TC[0][t - td_wl - td_syn - 1] - I_ps_TC[1][t - td_wl - td_syn - 1]
v_TC[tc][t] = v_TC_aux + dt*(dv_TC + coupling_cortex + coupling_thalamus + bg_activity + TC_fid*dbs_I)
u_TC[tc][t] = u_TC_aux + dt*du_TC
u = 1*u_TC_syn
R = 1*R_TC_syn
I = 1*I_TC_syn
# Synapse - Within layer
syn_TC = tm_synapse_eq(u = u_TC_syn,
R = R_TC_syn,
I = I_TC_syn,
AP = AP_TC_aux,
t_f = t_f_E,
t_d = t_d_E,
t_s = t_s_E,
U = U_E,
A = A_E,
dt = dt,
p = p)
# Synapse - With cortex
syn_TC_D = tm_synapse_eq(u = u,
R = R,
I = I,
AP = AP_TC_aux,
t_f = t_f_E,
t_d = t_d_E,
t_s = t_s_E,
U = U_E,
A = A_E_T_D,
dt = dt,
p = p)
R_TC_syn = 1*syn_TC['R']
u_TC_syn = 1*syn_TC['u']
I_TC_syn = 1*syn_TC['I']
I_syn[0][tc] = 1*syn_TC['Ipost']
I_syn_t[0][tc] = 1*syn_TC_D['Ipost']
PSC_TC[0][t] = np.sum(I_syn)
PSC_T_D[0][t] = np.sum(I_syn_t)
return v_TC, u_TC, PSC_TC, u_TC_syn, I_TC_syn, R_TC_syn, PSC_T_D