-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathultrapollution_exogeneity.py
359 lines (230 loc) · 10.9 KB
/
ultrapollution_exogeneity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# This script creates a data set for running a diff-in-diff to test for the exogeneity of pollution in ultramarathon performance
# Importing required modules
import pandas as pd
import numpy as np
# Defining username + filepath
username = ''
filepath = 'C:/Users/' + username + '/Documents/Data/ultrapollution/'
# Reading in the data sets
ultra_data = pd.read_csv(filepath + 'ultra_data/ultradata.csv')
ccmap = pd.read_csv(filepath + 'ultra_data/ccmap.csv', sep = '|')
cases = pd.read_csv(filepath + 'ultra_data/time_series_covid19_confirmed_US.csv')
mhi = pd.read_csv(filepath + 'ultra_data/Median_Household_Income.csv')
pop = pd.read_csv(filepath + 'ultra_data/Population.csv')
pm = pd.read_csv(filepath + 'pm_data.csv')
pm10 = pd.read_csv(filepath + 'pm10_data.csv')
co = pd.read_csv(filepath + 'co_data.csv')
o3 = pd.read_csv(filepath + 'ozone_data.csv')
no2 = pd.read_csv(filepath + 'no2_data.csv')
# Cleaning the ccmap city to county conversion file and the cases file
ccmap = ccmap.replace(to_replace = 'Washington, D.C.', value = 'District of Columbia') # Update DC naming convention
ccmap.City = ccmap.City.str.lower()
ccmap.County = ccmap.County.str.lower()
cases.Admin2 = cases.Admin2.str.lower()
# Extracting races + race dates + race counts + cities + states from ultra_data
races = list(ultra_data.RACE_ID.unique())
days = [ultra_data[ultra_data.RACE_ID == r].median()['RACE_Date'] for r in races]
months = [ultra_data[ultra_data.RACE_ID == r].reset_index(drop = True)['RACE_Month'][0] for r in races]
years = [ultra_data[ultra_data.RACE_ID == r].median()['RACE_Year'] for r in races]
runners = [ultra_data[ultra_data.RACE_ID == r].median()['RACE_Finisher_Count'] for r in races]
cities = [ultra_data[ultra_data.RACE_ID == r].reset_index(drop = True)['RACE_City'][0] for r in races]
states = [ultra_data[ultra_data.RACE_ID == r].reset_index(drop = True)['RACE_State'][0] for r in races]
# Defining a helper function for assigning FIPS via ccmap and cases
def flipsadelphia(city, state):
city = city.lower()
state = state.upper().strip('"')
sx = list(ccmap['State short']).index(state)
st = ccmap['State full'][sx]
try:
cc = ccmap[ccmap['City'] == city]
cc = cc[cc['State short'] == state]
county = cc.iloc[0]['County'].lower()
except:
county = 'NOPE'
if county != 'NOPE':
if (county[0:5] == 'saint') and (county != 'saint marys'):
back = county[5:]
county = 'st.' + back
elif county == 'virginia beach city':
county = 'virginia beach'
elif county == 'alexandria city':
county = 'alexandria'
elif county == 'norfolk city':
county = 'norfolk'
elif county == 'fredericksburg city':
county = 'fredericksburg'
elif county == 'chesapeake city':
county = 'chesapeake'
elif county == 'lexington city':
county = 'lexington'
elif county == 'falls church city':
county = 'falls church'
elif county == 'staunton city':
county = 'staunton'
elif county == 'la porte':
county = 'laporte'
elif county == 'suffolk city':
county = 'suffolk'
elif county == 'newport news city':
county = 'newport news'
elif county == 'hampton city':
county = 'hampton'
elif county == 'manassas city':
county = 'manassas'
elif county == 'harrisonburg city':
county = 'harrisonburg'
elif county == 'prince georges':
county = "prince george's"
elif county == 'la salle':
county = 'lasalle'
elif county == 'saint marys':
county = "st. mary's"
elif county == 'lynchburg city':
county = 'lynchburg'
elif county == 'portsmouth city':
county = 'portsmouth'
elif county == 'poquoson city':
county = 'poquoson'
elif county == 'queen annes':
county = "queen anne's"
elif county == 'matanuska susitna':
county = 'matanuska-susitna'
elif county == 'st joseph':
county = 'st. joseph'
elif county == 'de kalb':
county = 'dekalb'
elif county == 'waynesboro city':
county = 'waynesboro'
elif county == 'winchester city':
county = 'winchester'
elif county == 'martinsville city':
county = 'martinsville'
elif county == 'danville city':
county = 'danville'
elif county == 'bristol city':
county = 'bristol'
elif county == 'galax city':
county = 'galax'
elif county == 'colonial heights city':
county = 'colonial heights'
try:
tmp = cases[cases['Admin2'] == county]
tmp = tmp[tmp['Province_State'] == st]
flips = int(tmp.iloc[0]['FIPS'])
except:
flips = None
else:
flips = None
return flips
# Mapping cities to counties / FIPS
counties = [flipsadelphia(cities[i], states[i]) for i in range(len(states))]
# Matching
matches = []
cpop = []
mpop = []
cinc = []
minc = []
for c in counties:
if c != None:
try:
year = int(years[counties.index(c)]) # get year of observation
incs = mhi[mhi.year == year] # subset mhi for year
refinc = incs[incs.countyid == c]['medianhouseholdincome'].mean() # get obs mhi
incs = incs[incs['medianhouseholdincome'] > .95*refinc] # subset for within 5%
incs = incs[incs['medianhouseholdincome'] < 1.05*refinc].reset_index(drop = True) # subset for within 5%
pyear = 'pop' + str(year) # colname for pop + year
pops = pop[['fips', 'stname', pyear]] # subset pop for year
refpop = pops[pops.fips == c][pyear].mean() # get obs pop
support = list(incs.countyid.unique()) # get potential matches from mhi
support.remove(c) # drop c from support
pops = pops[pops.fips.isin(support)] # subset pops for support
pops = pops[pops[pyear] > .95*refpop] # subset for within 5%
pops = pops[pops[pyear] < 1.05*refpop].reset_index(drop = True) # subset for within 5%
cpop.append(refpop)
cinc.append(refinc)
if len(pops) > 0:
diffs = [abs(refpop - pops[pyear][i]) for i in range(len(pops))]
min_id = diffs.index(min(diffs))
matches.append(pops.fips[min_id])
mpop.append(pops[pyear][min_id])
minc.append(incs[incs.countyid == pops.fips[min_id]].mean()['medianhouseholdincome'])
else:
matches.append(None)
mpop.append(None)
minc.append(None)
except:
matches.append(None)
cpop.append(None)
cinc.append(None)
mpop.append(None)
minc.append(None)
else:
matches.append(None)
cpop.append(None)
cinc.append(None)
mpop.append(None)
minc.append(None)
# Creating a pollution dataframe from matching
m_ids = [m for m in range(len(matches)) if matches[m] != None]
matches = [matches[m] for m in m_ids]
races = [races[m] for m in m_ids]
days = [days[m] for m in m_ids]
months = [months[m] for m in m_ids]
years = [years[m] for m in m_ids]
runners = [runners[m] for m in m_ids]
cities = [cities[m] for m in m_ids]
states = [states[m] for m in m_ids]
cpop = [cpop[m] for m in m_ids]
mpop = [mpop[m] for m in m_ids]
cinc = [cinc[m] for m in m_ids]
minc = [minc[m] for m in m_ids]
dpop = cpop + mpop
dinc = cinc + minc
FIPS = races + matches # FIPS list for df
treat = [1]*2828 + [0]*2828 # Indicator of race or no
count = runners + [0]*2828 # Finisher counts
state = [int(np.floor(f/1000)) for f in FIPS] # State FE
def date_fx(yr, mon, day):
month_fx = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
y = str(int(yr))
m = str(month_fx.index(mon) + 1)
d = str(int(day))
if len(m) < 2:
m = '0' + m
if len(d) < 2:
d = '0' + d
out = int(y + m + d)
return out
dates = [date_fx(years[i], months[i], days[i]) for i in range(len(years))] # Making dates to use to get the pollution data
dates = dates + dates
dpm = []
dpm10 = []
dco = []
do3 = []
dno2 = []
for i in range(len(dates)):
tpm = pm[pm.Date == dates[i]]
tpm10 = pm10[pm10.Date == dates[i]]
tco = co[co.Date == dates[i]]
to3 = o3[o3.Date == dates[i]]
tno2 = no2[no2.Date == dates[i]]
dpm.append(tpm[tpm.FIPS == FIPS[i]].mean()['Value'])
dpm10.append(tpm10[tpm10.FIPS == FIPS[i]].mean()['Value'])
dco.append(tco[tco.FIPS == FIPS[i]].mean()['Value'])
do3.append(to3[to3.FIPS == FIPS[i]].mean()['Value'])
dno2.append(tno2[tno2.FIPS == FIPS[i]].mean()['Value'])
FIPS = pd.Series(FIPS, name = 'FIPS')
state = pd.Series(state, name = 'State')
dates = pd.Series(dates, name = 'Date')
treat = pd.Series(treat, name = 'Event')
count = pd.Series(count, name = 'Count')
dpop = pd.Series(dpop, name = 'Population')
dinc = pd.Series(dinc, name = 'Income')
dpm = pd.Series(dpm, name = 'PM2.5')
dpm10 = pd.Series(dpm10, name = 'PM10')
do3 = pd.Series(do3, name = 'O3')
dno2 = pd.Series(dno2, name = 'NO2')
dco = pd.Series(dco, name = 'CO')
output_df = pd.concat([FIPS, state, dates, treat, count, dpop, dinc, dpm, dpm10, do3, dno2, dco], axis = 1)
# Write output_df to file
output_df.to_csv(filepath + 'ultra_data/exo_match.csv', index = False)