-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path00-generate-data.Rmd
818 lines (643 loc) · 30.4 KB
/
00-generate-data.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
---
title: "Case Study Setup"
output: html_document
date: "2023-12-26"
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
# Generate Data
In this section, we will generate the data needed for the rest of the case study.
At the end of the file, we will also generate the first GLM to be used as our complement of credibility and append the prediction to this data.
We encourage you to save this data locally to avoid needing to resimulate it when proceeding with the case study.
First, we install the necessary packages for the case study.
A check for these packages is made at the beginning of future Rmd files, so no need to save this list for later.
```{r packages, echo=FALSE, include=FALSE}
# Function to install and load packages
install_and_load <- function(package) {
if (!require(package, character.only = TRUE)) {
install.packages(package)
library(package, character.only = TRUE)
}
}
# List of packages
packages <- c("data.table", "statmod", "ggplot2", "tweedie",
"glmnet", "HDtweedie", "plotly", "arrow", "knitr")
# Install and load all packages
sapply(packages, install_and_load)
```
Now, we will define "true relativities" for variables in our base modeling dataset.
We are using an exponential shape to make it easy for our variable transformations to exactly match the true relativities.
```{r, echo=FALSE, include=FALSE}
driver_age_table <- data.table(
"driver_age" = 18:100,
"true_driver_age_relativity" = c(1.05^(20:1), c((.9^(1 / 39))^(0:39)), .9 * (1.01^(1:23)))
)
vehicle_age_table <- data.table(
"vehicle_age" = 0:19,
"true_vehicle_age_relativity" = c(1.03^(10:0), 1.01^(-1:-9))
)
even_category_table <- data.table(
"even_category" = 0:1, "true_MultiPolicy_relativity" = (c(1, .8)),
"MultiPolicy" = c("multi_no", "multi_yes")
)
small_category_table <- data.table(
"small_category" = 0:1, "true_xTreme_TurnSignal_relativity" = c(1, .2),
"xTreme_TurnSignal" = c("xTreme_no", "xTreme_yes")
)
four_category_table <- data.table(
"four_categories" = 0:3, "true_car_weight_relativity" = c(.7, 1, 1.2, 1.2),
"car_weight" = c(
"weight_heavy", "weight_medium",
"weight_light", "weight_extra_light"
)
)
ten_category_table <- data.table(
"ten_categories" = 0:9, "true_industry_code_relativity" =
c(1.3, .8, .5, 1, .9, 1.2, 1.5, .7, .6, 2),
"industry_code" = c(
"ind_health_care", "ind_retail", "ind_finance_and_insurance",
"ind_education", "ind_fine_arts", "ind_food_services",
"ind_construction", "ind_farming", "ind_real_estate",
"ind_fireworks"
)
)
```
This is the same process, but for the large state data.
Differences from the base modeling data are noted through comments in the code.
```{r, echo=FALSE, include=FALSE}
# In this large state, the driver age relativity is steeper in the beginning and flat in the end.
# 1.05^(20:1) changed to 1.07^(20:1)
large_state_driver_age_table <- data.table(
"driver_age" = 18:100,
"true_driver_age_relativity" = c(
1.06^(20:1), c((.9^(1 / 39))^(0:39)),
.9 * (1.003^(1:23))
)
)
# vehicle age in this large state remains the same
large_state_vehicle_age_table <- data.table(
"vehicle_age" = 0:19,
"true_vehicle_age_relativity" = c(1.03^(10:0), 1.01^(-1:-9))
)
# Multi-Policy Discount has a slightly larger discount here.
# Discount changed from .8 to .75
large_state_even_category_table <- data.table(
"even_category" = 0:1, "true_MultiPolicy_relativity" = (c(1, .7)),
"MultiPolicy" = c("multi_no", "multi_yes")
)
# people are using the xTreme TurnSignal slightly less effectively in this state
# discount changed from .2 to .4
large_state_small_category_table <- data.table(
"small_category" = 0:1, "true_xTreme_TurnSignal_relativity" = c(1, .4),
"xTreme_TurnSignal" = c("xTreme_no", "xTreme_yes")
)
# Light trucks have a better relativity, and extra_light cars perform much worse in this state
# 1.2 to 1.15, 1.2 to 1.3
large_state_four_category_table <- data.table(
"four_categories" = 0:3, "true_car_weight_relativity" =
c(.7, 1, 1.15, 1.3),
"car_weight" = c(
"weight_heavy", "weight_medium",
"weight_light", "weight_extra_light"
)
)
# Health Care performs better 1.3 to 1.2
# Fireworks performs even worse 2 to 2.5
# Construction performs better 1.5 to 1.4
large_state_ten_category_table <- data.table(
"ten_categories" = 0:9, "true_industry_code_relativity" =
c(1.2, .8, .5, 1, .9, 1.2, 1.4, .7, .6, 3),
"industry_code" = c(
"ind_health_care", "ind_retail",
"ind_finance_and_insurance",
"ind_education", "ind_fine_arts",
"ind_food_services", "ind_construction",
"ind_farming", "ind_real_estate",
"ind_fireworks"
)
)
```
This is the same process, but for the medium state data.
Differences from the base modeling data are noted through comments in the code.
```{r medium-state, echo=FALSE, include=FALSE}
# In this medium state, the driver age relativity is less steep in the beginning and decreases in the end.
# 1.05^(20:1) changed to 1.03^(20:1)
# 1.01^(1:23) changed to 1.01^(-1:-23)
medium_state_driver_age_table <- data.table(
"driver_age" = 18:100,
"true_driver_age_relativity" = c(
1.03^(20:1), c((.9^(1 / 39))^(0:39)),
.9 * (1.01^(-1:-23))
)
)
# vehicle age in this medium state decreases faster in the tail
# 1.01^(-1:-9) changed to
medium_state_vehicle_age_table <- data.table(
"vehicle_age" = 0:19,
"true_vehicle_age_relativity" = c(1.03^(10:0), 1.02^(-1:-9))
)
# Multi-Policy Discount has a slightly smaller discount here.
# Discount changed from .8 to .75
medium_state_even_category_table <- data.table(
"even_category" = 0:1, "true_MultiPolicy_relativity" = (c(1, .75)),
"MultiPolicy" = c("multi_no", "multi_yes")
)
# people are using the xTreme TurnSignal slightly less effectively in this state
# discount changed from .2 to .5
medium_state_small_category_table <- data.table(
"small_category" = 0:1, "true_xTreme_TurnSignal_relativity" = c(1, .5),
"xTreme_TurnSignal" = c("xTreme_no", "xTreme_yes")
)
# Light vehicles have a worse relativity, and extra_light vehicles perform worse as well
# 1.2 to 1.3, 1.2 to 1.4
medium_state_four_category_table <- data.table(
"four_categories" = 0:3, "true_car_weight_relativity" =
c(.7, 1, 1.3, 1.4),
"car_weight" = c(
"weight_heavy", "weight_medium",
"weight_light", "weight_extra_light"
)
)
# Retail performs better in this state .8 to .7
# Fireworks performs better 2 to 1.5
# Fine arts are riskier .9 to 1.1
medium_state_ten_category_table <- data.table(
"ten_categories" = 0:9, "true_industry_code_relativity" =
c(1.3, .7, .5, 1, 1.1, 1.2, 1.5, .7, .6, 1.5),
"industry_code" = c(
"ind_health_care", "ind_retail",
"ind_finance_and_insurance",
"ind_education", "ind_fine_arts",
"ind_food_services", "ind_construction",
"ind_farming", "ind_real_estate",
"ind_fireworks"
)
)
```
This is the same process, but for the first small state data.
Differences from the base modeling data are noted through comments in the code.
```{r small-state, echo=FALSE, include=FALSE}
# This small state is different than the countrywide data (Unlike the next small state)
# Continues to decrease in the tail
small_state_driver_age_table <- data.table(
"driver_age" = 18:100,
"true_driver_age_relativity" = c(1.05^(20:1), c((.9^(1 / 39))^(0:62)))
)
# Steeper Driver Age
small_state_vehicle_age_table <- data.table(
"vehicle_age" = 0:19,
"true_vehicle_age_relativity" = c(1.04^(10:0), 1.01^(-1:-9))
)
# Not as much of a discount for multi-policy category: yes
small_state_even_category_table <- data.table(
"even_category" = 0:1, "true_MultiPolicy_relativity" = (c(1, .6)),
"MultiPolicy" = c("multi_no", "multi_yes")
)
# Turn Signal is not as effective in this state.
small_state_small_category_table <- data.table(
"small_category" = 0:1, "true_xTreme_TurnSignal_relativity" = c(1, .6),
"xTreme_TurnSignal" = c("xTreme_no", "xTreme_yes")
)
# extra light is more risky.
# heavy is only slightly less risky.
small_state_four_category_table <- data.table(
"four_categories" = 0:3, "true_car_weight_relativity" = c(.8, 1, 1.2, 2),
"car_weight" = c(
"weight_heavy", "weight_medium",
"weight_light", "weight_extra_light"
)
)
# health_care is at the 1.0 relativity
# Real estate is slightly more risky
# food services is slightly less risky
small_state_ten_category_table <- data.table(
"ten_categories" = 0:9, "true_industry_code_relativity" =
c(1.4, .8, .5, 1, .9, 1.1, 1.5, .7, .7, 2),
"industry_code" = c(
"ind_health_care", "ind_retail",
"ind_finance_and_insurance",
"ind_education", "ind_fine_arts",
"ind_food_services", "ind_construction",
"ind_farming", "ind_real_estate",
"ind_fireworks"
)
)
```
Let's create a chart to compare the state differences between the driver age factors (Figure 7.2)...
```{r driver age, include=FALSE}
driver_age_table
large_state_driver_age_table
medium_state_driver_age_table
small_state_driver_age_table
# Assuming you have the four tables: driver_age_table, large_state_driver_age_table,
# medium_state_driver_age_table, small_state_driver_age_table
# Merging and renaming columns
merged_table <- merge(driver_age_table, large_state_driver_age_table, by = "driver_age")
names(merged_table)[names(merged_table) == "true_driver_age_relativity.y"] <- "large"
names(merged_table)[names(merged_table) == "true_driver_age_relativity.x"] <- "full"
merged_table <- merge(merged_table, medium_state_driver_age_table, by = "driver_age")
names(merged_table)[names(merged_table) == "true_driver_age_relativity"] <- "medium"
merged_table <- merge(merged_table, small_state_driver_age_table, by = "driver_age")
names(merged_table)[names(merged_table) == "true_driver_age_relativity"] <- "small"
# Plotting
library(ggplot2)
ggplot(merged_table, aes(x = driver_age)) +
geom_line(aes(y = full, colour = "Full")) +
geom_line(aes(y = large, colour = "Large")) +
geom_line(aes(y = medium, colour = "Medium")) +
geom_line(aes(y = small, colour = "Small")) +
labs(title = "Driver Age Relativity by State Size",
x = "Driver Age",
y = "True Driver Age Relativity") +
theme_minimal()
```
... and the vehicle age factors (Figure 7.3)...
```{r vehicle_age , include=FALSE}
# Assuming you have the four tables: driver_age_table, large_state_driver_age_table,
# medium_state_driver_age_table, small_state_driver_age_table
# Merging and renaming columns
merged_table <- merge(vehicle_age_table, large_state_vehicle_age_table, by = "vehicle_age")
names(merged_table)[names(merged_table) == "true_vehicle_age_relativity.y"] <- "large"
names(merged_table)[names(merged_table) == "true_vehicle_age_relativity.x"] <- "full"
merged_table <- merge(merged_table, medium_state_vehicle_age_table, by = "vehicle_age")
names(merged_table)[names(merged_table) == "true_vehicle_age_relativity"] <- "medium"
merged_table <- merge(merged_table, small_state_vehicle_age_table, by = "vehicle_age")
names(merged_table)[names(merged_table) == "true_vehicle_age_relativity"] <- "small"
# Plotting
library(ggplot2)
ggplot(merged_table, aes(x = vehicle_age)) +
geom_line(aes(y = full, colour = "Full")) +
geom_line(aes(y = large, colour = "Large")) +
geom_line(aes(y = medium, colour = "Medium")) +
geom_line(aes(y = small, colour = "Small")) +
labs(title = "Driver Age Relativity by State Size",
x = "Driver Age",
y = "True Driver Age Relativity") +
theme_minimal()
```
... and the industry code factors (Figure 7.7.
```{r ten_category age, echo=FALSE, include=FALSE}
copied_ten_category_table <- copy(ten_category_table)
copied_ten_category_table[, ten_categories := NULL]
copied_large_state_ten_category_table <- copy(large_state_ten_category_table)
copied_large_state_ten_category_table[, ten_categories := NULL]
copied_medium_state_ten_category_table <- copy(medium_state_ten_category_table)
copied_medium_state_ten_category_table[, ten_categories := NULL]
copied_small_state_ten_category_table <- copy(small_state_ten_category_table)
copied_small_state_ten_category_table[, ten_categories := NULL]
# Assuming you have the four tables: ten_category_table, large_state_ten_category_table,
# medium_state_ten_category_table, small_state_ten_category_table
# Merging and renaming columns
merged_table <- merge(copied_ten_category_table, copied_large_state_ten_category_table, by = "industry_code")
names(merged_table)[names(merged_table) == "true_industry_code_relativity.y"] <- "large"
names(merged_table)[names(merged_table) == "true_industry_code_relativity.x"] <- "full"
merged_table <- merge(merged_table, copied_medium_state_ten_category_table, by = "industry_code")
names(merged_table)[names(merged_table) == "true_industry_code_relativity"] <- "medium"
merged_table <- merge(merged_table, copied_small_state_ten_category_table, by = "industry_code")
names(merged_table)[names(merged_table) == "true_industry_code_relativity"] <- "small"
merged_table
```
We can start now simulating the data.
Here is where we set the seed for our data simulation.
First the base modeling data...
```{r large state, echo=FALSE}
# Set the size of the various modeling datasets
nrow_base_modeling_data <- 2500000
nrow_large_state_modeling_data <- 500000
nrow_medium_state_modeling_data <- 300000
nrow_small_state_modeling_data <- 100000
nrow_small_cw_dist_state_modeling_data <- 100000
# This seed will make the data reproducable and match the case study
set.seed(99999)
base_modeling_data <- data.table(
"driver_age" = round(rbeta(nrow_base_modeling_data, 2, 3) * 95 + 14, 0),
"vehicle_age" = round(rbeta(nrow_base_modeling_data, 2, 5) * 20, 0),
"even_category" = round(rbeta(nrow_base_modeling_data, 3, 3), 0),
"small_category" = round(rbeta(nrow_base_modeling_data, 2, 7), 0),
"four_categories" = round(rbeta(nrow_base_modeling_data, 3, 4) * 3, 0),
"ten_categories" = round(rbeta(nrow_base_modeling_data, 3, 6) * 10, 0),
"noise_factor" = rbeta(nrow_base_modeling_data, 4, 5) + .5,
"subset" = "base_data",
"stratification" = sample.int(5, nrow_base_modeling_data, replace = TRUE),
"loss_cost" = 500
)
base_modeling_data[driver_age > 100, driver_age := 100]
base_modeling_data[driver_age %in% c(14, 15), driver_age := 19]
base_modeling_data[driver_age %in% c(16, 17), driver_age := 18]
base_modeling_data[vehicle_age > 20, vehicle_age := 20]
#
# hist(round(rbeta(nrow_base_modeling_data,2,3)*86+14,0))
min(round(rbeta(nrow_base_modeling_data, 2, 3) * 95 + 14, 0))
max(round(rbeta(nrow_base_modeling_data, 2, 3) * 95 + 14, 0))
# Take a look at the base modeling data.
head(base_modeling_data)
nrow(base_modeling_data)
# Make a list to merge the tables together
base_factor_tables <- list(
driver_age_table, vehicle_age_table,
even_category_table, small_category_table,
four_category_table, ten_category_table
)
# Merge the tables together using a for-loop.
for (table in base_factor_tables) {
base_modeling_data <- merge.data.table(base_modeling_data, table, by = colnames(table)[1])
}
# check that they were merged correctly
head(base_modeling_data)
nrow(base_modeling_data)
```
... then large stat data ...
```{r, echo=FALSE, include=FALSE}
# Now, we will perform all of these same operations for a large state subset
large_state_modeling_data <- data.table(
"driver_age" = round(rbeta(nrow_large_state_modeling_data, 2, 3) * 95 + 14, 0),
"vehicle_age" = round(rbeta(nrow_large_state_modeling_data, 2, 5) * 25, 0),
"even_category" = round(rbeta(nrow_large_state_modeling_data, 3, 3), 0),
"small_category" = round(rbeta(nrow_large_state_modeling_data, 2, 7), 0),
"four_categories" = round(rbeta(nrow_large_state_modeling_data, 3, 4) * 3, 0),
"ten_categories" = round(rbeta(nrow_large_state_modeling_data, 3, 6) * 10, 0),
"noise_factor" = rbeta(nrow_large_state_modeling_data, 4, 5) + .5,
"subset" = "large_state",
"stratification" = sample.int(5, nrow_large_state_modeling_data,
replace = TRUE
),
"loss_cost" = 800
)
large_state_modeling_data[driver_age > 100, driver_age := 100]
base_modeling_data[driver_age %in% c(14, 15), driver_age := 19]
base_modeling_data[driver_age %in% c(16, 17), driver_age := 18]
large_state_modeling_data[vehicle_age > 20, vehicle_age := 20]
head(large_state_modeling_data)
# Again, list and merge the tables
large_state_factor_tables <- list(
large_state_driver_age_table, large_state_vehicle_age_table,
large_state_even_category_table, large_state_small_category_table,
large_state_four_category_table, large_state_ten_category_table
)
for (table in large_state_factor_tables) {
large_state_modeling_data <- merge.data.table(large_state_modeling_data, table, by = colnames(table)[1])
}
head(large_state_modeling_data)
nrow(large_state_modeling_data)
```
... medium state data ...
```{r medium-gen, echo=FALSE, include=FALSE}
# Now, we will perform all of these same operations for a medium state subset
medium_state_modeling_data <- data.table(
"driver_age" = round(rbeta(nrow_medium_state_modeling_data, 2, 3) * 95 + 14, 0),
"vehicle_age" = round(rbeta(nrow_medium_state_modeling_data, 2, 5) * 25, 0),
"even_category" = round(rbeta(nrow_medium_state_modeling_data, 3, 3), 0),
"small_category" = round(rbeta(nrow_medium_state_modeling_data, 2, 7), 0),
"four_categories" = round(rbeta(nrow_medium_state_modeling_data, 3, 4) * 3, 0),
"ten_categories" = round(rbeta(nrow_medium_state_modeling_data, 3, 6) * 10, 0),
"noise_factor" = rbeta(nrow_medium_state_modeling_data, 4, 5) + .5,
"subset" = "medium_state",
"stratification" = sample.int(5, nrow_medium_state_modeling_data,
replace = TRUE
),
"loss_cost" = 450
)
medium_state_modeling_data[driver_age > 100, driver_age := 100]
base_modeling_data[driver_age %in% c(14, 15), driver_age := 19]
base_modeling_data[driver_age %in% c(16, 17), driver_age := 18]
medium_state_modeling_data[vehicle_age > 20, vehicle_age := 20]
head(medium_state_modeling_data)
medium_state_factor_tables <- list(
medium_state_driver_age_table, medium_state_vehicle_age_table,
medium_state_even_category_table, medium_state_small_category_table,
medium_state_four_category_table, medium_state_ten_category_table
)
for (table in medium_state_factor_tables) {
medium_state_modeling_data <- merge.data.table(medium_state_modeling_data, table, by = colnames(table)[1])
}
head(medium_state_modeling_data)
```
... and small state data.
```{r small-state-gen, echo=FALSE, include=FALSE}
# Now, we will perform all of these same operations for a small state subset
small_state_modeling_data <- data.table(
"driver_age" = round(rbeta(nrow_small_state_modeling_data, 2, 3) * 95 + 14, 0),
"vehicle_age" = round(rbeta(nrow_small_state_modeling_data, 2, 5) * 25, 0),
"even_category" = round(rbeta(nrow_small_state_modeling_data, 3, 3), 0),
"small_category" = round(rbeta(nrow_small_state_modeling_data, 2, 7), 0),
"four_categories" = round(rbeta(nrow_small_state_modeling_data, 3, 4) * 3, 0),
"ten_categories" = round(rbeta(nrow_small_state_modeling_data, 3, 6) * 10, 0),
"noise_factor" = rbeta(nrow_small_state_modeling_data, 4, 5) + .5,
"subset" = "small_state",
"stratification" = sample.int(5, nrow_small_state_modeling_data,
replace = TRUE
),
"loss_cost" = 400
)
small_state_modeling_data[driver_age > 100, driver_age := 100]
base_modeling_data[driver_age %in% c(14, 15), driver_age := 19]
base_modeling_data[driver_age %in% c(16, 17), driver_age := 18]
small_state_modeling_data[vehicle_age > 20, vehicle_age := 20]
head(small_state_modeling_data)
small_state_factor_tables <- list(
small_state_driver_age_table, small_state_vehicle_age_table,
small_state_even_category_table, small_state_small_category_table,
small_state_four_category_table, small_state_ten_category_table
)
for (table in small_state_factor_tables) {
small_state_modeling_data <- merge.data.table(small_state_modeling_data, table, by = colnames(table)[1])
}
head(small_state_modeling_data)
```
Additionally, let's generate a second small state data set with the same true risk relativities as the larger modeling data set.
```{r gen-small-state-2, echo=FALSE, include=FALSE}
# Now, we will perform all of these same operations for a small state subset.
# Here, all relativities are identical to our base_modeling_data subset
small_cw_dist_state_modeling_data <- data.table(
"driver_age" = round(rbeta(nrow_small_cw_dist_state_modeling_data, 2, 3) * 95 + 14, 0),
"vehicle_age" = round(rbeta(nrow_small_cw_dist_state_modeling_data, 2, 5) * 25, 0),
"even_category" = round(rbeta(nrow_small_cw_dist_state_modeling_data, 3, 3), 0),
"small_category" = round(rbeta(nrow_small_cw_dist_state_modeling_data, 2, 7), 0),
"four_categories" = round(rbeta(nrow_small_cw_dist_state_modeling_data, 3, 4) * 3, 0),
"ten_categories" = round(rbeta(nrow_small_cw_dist_state_modeling_data, 3, 6) * 10, 0),
"noise_factor" = rbeta(nrow_small_cw_dist_state_modeling_data, 4, 5) + .5,
"subset" = "small_cw_dist_state",
"stratification" = sample.int(5, nrow_small_cw_dist_state_modeling_data, replace = TRUE),
"loss_cost" = 500
)
small_cw_dist_state_modeling_data[driver_age > 100, driver_age := 100]
base_modeling_data[driver_age %in% c(14, 15), driver_age := 19]
base_modeling_data[driver_age %in% c(16, 17), driver_age := 18]
small_cw_dist_state_modeling_data[vehicle_age > 20, vehicle_age := 20]
# This small state is identical to the base modeling data
small_cw_dist_state_driver_age_table <- data.table(
"driver_age" = 18:100,
"true_driver_age_relativity" = c(
1.05^(20:1),
c((.9^(1 / 39))^(0:39)),
.9 * (1.01^(1:23))
)
)
small_cw_dist_state_vehicle_age_table <- data.table(
"vehicle_age" = 0:19,
"true_vehicle_age_relativity" = c(1.03^(10:0), 1.015^(-1:-9))
)
small_cw_dist_state_even_category_table <- data.table(
"even_category" = 0:1,
"true_MultiPolicy_relativity" = (c(1, .8)),
"MultiPolicy" = c("multi_no", "multi_yes")
)
small_cw_dist_state_small_category_table <- data.table(
"small_category" = 0:1,
"true_xTreme_TurnSignal_relativity" = c(1, .2),
"xTreme_TurnSignal" = c("xTreme_no", "xTreme_yes")
)
small_cw_dist_state_four_category_table <- data.table(
"four_categories" = 0:3,
"true_car_weight_relativity" = c(.7, 1, 1.2, 1.2),
"car_weight" = c(
"weight_heavy", "weight_medium",
"weight_light", "weight_extra_light"
)
)
small_cw_dist_state_ten_category_table <- data.table(
"ten_categories" = 0:9, "true_industry_code_relativity" =
c(1.3, .8, .5, 1, .9, 1.2, 1.5, .7, .6, 2),
"industry_code" = c(
"ind_health_care", "ind_retail",
"ind_finance_and_insurance",
"ind_education", "ind_fine_arts",
"ind_food_services", "ind_construction",
"ind_farming", "ind_real_estate",
"ind_fireworks"
)
)
small_cw_dist_state_factor_tables <- list(
small_cw_dist_state_driver_age_table,
small_cw_dist_state_vehicle_age_table,
small_cw_dist_state_even_category_table,
small_cw_dist_state_small_category_table,
small_cw_dist_state_four_category_table,
small_cw_dist_state_ten_category_table
)
for (table in small_cw_dist_state_factor_tables) {
small_cw_dist_state_modeling_data <- merge.data.table(small_cw_dist_state_modeling_data, table, by = colnames(table)[1])
}
# Create the final overall modeling dataset
modeling_data <- rbind(
base_modeling_data,
large_state_modeling_data,
medium_state_modeling_data,
small_state_modeling_data,
small_cw_dist_state_modeling_data
)
```
We now have a full modeling dataset with all of the characteristics and true risk relativities.
It is now time to compute the overall true risk (as multiplication of relativities and loss cost) and proceed to simulate incurred losses using a tweedie distribution.
```{r, echo=FALSE, include=FALSE}
#### 2. Create variable transformations for modeling ####
# set base levels for categorical variables
modeling_data[, industry_code := relevel(as.factor(industry_code), ref = "ind_education")]
modeling_data[, car_weight := relevel(as.factor(car_weight), ref = "weight_medium")]
modeling_data[, xTreme_TurnSignal := relevel(as.factor(xTreme_TurnSignal), ref = "xTreme_no")]
modeling_data[, MultiPolicy := relevel(as.factor(MultiPolicy), ref = "multi_no")]
modeling_data[, subset := relevel(as.factor(subset), ref = "base_data")]
# calculate true risk multiplicatively to match the selected link function
modeling_data[, "true_risk" := loss_cost * true_driver_age_relativity * true_vehicle_age_relativity *
true_MultiPolicy_relativity * true_xTreme_TurnSignal_relativity *
true_car_weight_relativity * true_industry_code_relativity]
# Simulate the incurred loss using the true risk value
# Note that an error term is not included in this calculation
# You could include this in a "true_risk_with_error" column to simulate a dataset with additional volatility
modeling_data[, "incurred_loss" := rtweedie(length(true_risk), mu = true_risk, phi = 800, power = 1.6)]
# See that the overall frequency is about 4%.
# This frequency is an item that may be adjusted in future iterations
nrow(modeling_data[incurred_loss != 0, ]) / nrow(modeling_data)
# Average Risk is a bit under 700
mean(modeling_data$true_risk)
# We can see that the means are close, but as expected, there are far more zero values in the incurred_loss
summary(modeling_data$incurred_loss)
summary(modeling_data$true_risk)
# To simplify this case study, all exposures will be one. If this is set to a different value, our incurred_loss would need to be recalculated to reflect the fact that the true risk would be lower for partial policy terms.
modeling_data[, "exposure" := 1]
```
Because we know the true distribution of risk in the underlying dataset, we can use the "perfect" feature engineering in each model.
We will use this for our
This simplification is necessary to focus on the behavior of lasso credibility and not the individual feature engineering of each model.
It is true that this is not the best feature engeineering for each model because models describe the data - they do not describe the truth.
However, for the sake of this case study, we will use these transformations.
Models using iterative feature engineering are never "done" - we can likely always find a slightly statistically better feature engineering through iteration.
This simplifying assumption will allow us to focus on the behavior of lasso credibility rather than this iterative process.
Also, we will not introduce human error into this comparison by spending more time perfecting the feature engineering of one model vs. another.
```{r hinges}
# Create modeling hinges for driver_age
modeling_data[, driver_age_18_38_hinge := pmin(driver_age, 38)]
modeling_data[, driver_age_38_76_hinge := pmin(pmax(driver_age, 38), 76)]
modeling_data[, driver_age_76_99_hinge := pmax(driver_age, 76)]
#summary(modeling_data$driver_age_18_38_hinge)
#summary(modeling_data$driver_age_38_76_hinge)
#summary(modeling_data$driver_age_76_99_hinge)
# Create modeling hinges for vehicle_age
modeling_data[, vehicle_age_0_10_hinge := pmin(vehicle_age, 10)]
modeling_data[, vehicle_age_10_99_hinge := pmax(vehicle_age, 10)]
table(modeling_data$vehicle_age_0_10_hinge)
table(modeling_data$vehicle_age_10_99_hinge)
#summary(modeling_data$vehicle_age_0_10_hinge)
#summary(modeling_data$vehicle_age_10_99_hinge)
# Create one-hot encoded versions of categorical variables for penalized regression.
# We will do this manually for clarity. There are more efficient ways to code this.
# We will NOT create a one-hot level for the most populated variable.
# If we included all levels of a categorical variable as one-hot encoded, it would create aliasing.
# For the first two categorical variables, we already have the binary one-hot in our dataset.
modeling_data[, multi_yes := even_category]
modeling_data[, xTreme_yes := small_category]
# For the others, we will identify the base level, and then not include that in our one-hot variables
table(modeling_data$car_weight) # Medium is the base level
modeling_data[, weight_heavy := ifelse(car_weight == "weight_heavy", 1, 0)]
modeling_data[, weight_light := ifelse(car_weight == "weight_light", 1, 0)]
modeling_data[, weight_extra_light := ifelse(car_weight == "weight_extra_light", 1, 0)]
# Same procedure for the ten category variable "industry_code"
table(modeling_data$industry_code) # Education is the base level
modeling_data[, ind_construction := ifelse(industry_code == "ind_construction", 1, 0)]
modeling_data[, ind_farming := ifelse(industry_code == "ind_farming", 1, 0)]
modeling_data[, ind_finance_and_insurance := ifelse(industry_code == "ind_finance_and_insurance", 1, 0)]
modeling_data[, ind_fine_arts := ifelse(industry_code == "ind_fine_arts", 1, 0)]
modeling_data[, ind_fireworks := ifelse(industry_code == "ind_fireworks", 1, 0)]
modeling_data[, ind_food_services := ifelse(industry_code == "ind_food_services", 1, 0)]
modeling_data[, ind_health_care := ifelse(industry_code == "ind_health_care", 1, 0)]
modeling_data[, ind_real_estate := ifelse(industry_code == "ind_real_estate", 1, 0)]
modeling_data[, ind_retail := ifelse(industry_code == "ind_retail", 1, 0)]
modeling_data[, ind_base_data := ifelse(subset == "base_data", 1, 0)]
modeling_data[, ind_large_state := ifelse(subset == "large_state", 1, 0)]
modeling_data[, ind_medium_state := ifelse(subset == "medium_state", 1, 0)]
modeling_data[, ind_small_state := ifelse(subset == "small_state", 1, 0)]
modeling_data[, ind_small_state_cw_dist := ifelse(subset == "small_cw_dist_state", 1, 0)]
# set base levels and change to factors for GLM modeling.
modeling_data[, industry_code := relevel(as.factor(industry_code), ref = "ind_education")]
modeling_data[, car_weight := relevel(as.factor(car_weight), ref = "weight_medium")]
modeling_data[, xTreme_TurnSignal := relevel(as.factor(xTreme_TurnSignal), ref = "xTreme_no")]
modeling_data[, MultiPolicy := relevel(as.factor(MultiPolicy), ref = "multi_no")]
modeling_data[, subset := relevel(as.factor(subset), ref = "base_data")]
```
For the purpose of reproduction we also fit the countrywide model (will be discussed in a separate Rmd file).
This model's score is appended to the data to be used as a complement of credibility for future models.
```{r fitcountrywide}
training_data <- modeling_data[stratification %in% c(1, 2, 3, 4), ]
# run our initial GLM model
glm_model <- glm(
formula = incurred_loss ~
driver_age_18_38_hinge + driver_age_38_76_hinge + driver_age_76_99_hinge +
vehicle_age_0_10_hinge + vehicle_age_10_99_hinge +
C(MultiPolicy) + C(xTreme_TurnSignal) + C(car_weight) + C(industry_code) + C(subset),
family = tweedie(1.6, link.power = 0),
offset = log(exposure),
data = training_data
)
modeling_data[, cw_model_complement_of_credibility := predict.glm(glm_model, modeling_data, type = "response")]
```
And we finally export it.
Change the working directory here as you want.
```{r export, echo=FALSE, include=FALSE}
getwd()
#setwd()
# Write to Parquet file
write_parquet(modeling_data, "output_file.parquet")
```
```{r}
```