-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathLoadData_Original.R
50 lines (44 loc) · 2.14 KB
/
LoadData_Original.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Load Data Original, with minor changes to accomodate R
library(R.matlab)
# library(Matrix)
#library(parallel); options(mc.cores = 4)
load_data_original <- function(N) {
# % This method loads the training, validation and test set.
# % It also divides the training set into mini-batches.
# % Inputs:
# % N: Mini-batch size.
# % Outputs:
# % train_input: An array of size D X N X M, where
# % D: number of input dimensions (in this case, 3).
# % N: size of each mini-batch (in this case, 100).
# % M: number of minibatches.
# % train_target: An array of size 1 X N X M.
# % valid_input: An array of size D X number of points in the validation set.
# % test: An array of size D X number of points in the test set.
# % vocab: Vocabulary containing index to word mapping.
data.mat <- readMat("Neural Net Language Model/data.mat")
data <- list(testData = (data.mat$data[1,1,1][[1]]),
trainData = (data.mat$data[2,1,1][[1]]),
validData = (data.mat$data[3,1,1][[1]]),
vocab = unlist(data.mat$data[4,1,1])
)
numdims = size(data$trainData, 1)
D = numdims - 1 # subtract 1 because 1:D is the number of input words and D is the predicted word
M = floor(size(data$trainData, 2) / N)
# shift to an list of M minibatches, each with D*N
# looks like we threw out the remainder training data
train_input <- reshape(data$trainData[1:D, 1:(N*M), drop=F], D, N, M)
train_target <- reshape(data$trainData[D + 1, 1:(N*M), drop=F], 1, N, M)
valid_input <- data$validData[1:D,, drop=F]
valid_target <- data$validData[D + 1, , drop=F]
test_input <- data$validData[1:D, , drop=F]
test_target <- data$testData[D + 1, , drop=F]
vocab <- data$vocab
return(list(train_input=train_input,
train_target=train_target,
valid_input=valid_input,
valid_target=valid_target,
test_input=test_input,
test_target=test_target,
vocab=vocab))
}