-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathLoadData_Old.R
62 lines (53 loc) · 2.53 KB
/
LoadData_Old.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
library(R.matlab)
# library(Matrix)
library(parallel); options(mc.cores = 4)
load_data <- function(N) {
# % This method loads the training, validation and test set.
# % It also divides the training set into mini-batches.
# % Inputs:
# % N: Mini-batch size.
# % Outputs:
# % train_input: An array of size D X N X M, where
# % D: number of input dimensions (in this case, 3).
# % N: size of each mini-batch (in this case, 100).
# % M: number of minibatches.
# % train_target: An array of size 1 X N X M.
# % valid_input: An array of size D X number of points in the validation set.
# % test: An array of size D X number of points in the test set.
# % vocab: Vocabulary containing index to word mapping.
data.mat <- readMat("Neural Net Language Model/data.mat")
data <- list(testData = (data.mat$data[1,1,1][[1]]),
trainData = (data.mat$data[2,1,1][[1]]),
validData = (data.mat$data[3,1,1][[1]]),
vocab = unlist(data.mat$data[4,1,1])
)
numdims = nrow(data$trainData)
D = numdims - 1 # subtract 1 because 1:D is the number of input words and D is the predicted word
M = floor(ncol(data$trainData) / N)
# shift to an list of M minibatches, each with D*N
# looks like we threw out the remainder training data
splitMatrixIntoBatch <- function(dat, b, N, byCol=TRUE) {
# N is the size of each batch
# b is the requested batch
if(length(dim(dat)) == 0) {
if(byCol) dim(dat) <- c(1, length(dat)) else dim(dat) <- c(length(dat), 1)
}
start <- ((b - 1) * N) + 1
end <- b * N
if(byCol) return(dat[,start:end]) else return(dat[start:end,])
}
train_input <- mclapply(1:M, splitMatrixIntoBatch, N=N, dat=data$trainData[1:D,], byCol=TRUE)
train_target <- mclapply(1:M, splitMatrixIntoBatch, N=N, dat=data$trainData[D+1,], byCol=TRUE)
valid_input <- (data$validData[1:D,])
valid_target <- data$validData[D + 1,]
test_input <- (data$testData[1:D,])
test_target <- data$testData[D + 1,]
vocab <- data$vocab
return(list(train_input=train_input,
train_target=train_target,
valid_input=valid_input,
valid_target=valid_target,
test_input=test_input,
test_target=test_target,
vocab=vocab))
}