forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 1
/
VectorTransform.h
312 lines (209 loc) · 8.81 KB
/
VectorTransform.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD+Patents license found in the
* LICENSE file in the root directory of this source tree.
*/
// Copyright 2004-present Facebook. All Rights Reserved.
// -*- c++ -*-
#ifndef FAISS_VECTOR_TRANSFORM_H
#define FAISS_VECTOR_TRANSFORM_H
/** Defines a few objects that apply transformations to a set of
* vectors Often these are pre-processing steps.
*/
#include <vector>
#include "Index.h"
namespace faiss {
/** Any transformation applied on a set of vectors */
struct VectorTransform {
typedef Index::idx_t idx_t;
int d_in; ///! input dimension
int d_out; ///! output dimension
explicit VectorTransform (int d_in = 0, int d_out = 0):
d_in(d_in), d_out(d_out), is_trained(true)
{}
/// set if the VectorTransform does not require training, or if
/// training is done already
bool is_trained;
/** Perform training on a representative set of vectors. Does
* nothing by default.
*
* @param n nb of training vectors
* @param x training vecors, size n * d
*/
virtual void train (idx_t n, const float *x);
/** apply the random roation, return new allocated matrix
* @param x size n * d_in
* @return size n * d_out
*/
float *apply (idx_t n, const float * x) const;
/// same as apply, but result is pre-allocated
virtual void apply_noalloc (idx_t n, const float * x,
float *xt) const = 0;
/// reverse transformation. May not be implemented or may return
/// approximate result
virtual void reverse_transform (idx_t n, const float * xt,
float *x) const;
virtual ~VectorTransform () {}
};
/** Generic linear transformation, with bias term applied on output
* y = A * x + b
*/
struct LinearTransform: VectorTransform {
bool have_bias; ///! whether to use the bias term
/// check if matrix A is orthonormal (enables reverse_transform)
bool is_orthonormal;
/// Transformation matrix, size d_out * d_in
std::vector<float> A;
/// bias vector, size d_out
std::vector<float> b;
/// both d_in > d_out and d_out < d_in are supported
explicit LinearTransform (int d_in = 0, int d_out = 0,
bool have_bias = false);
/// same as apply, but result is pre-allocated
void apply_noalloc(idx_t n, const float* x, float* xt) const override;
/// compute x = A^T * (x - b)
/// is reverse transform if A has orthonormal lines
void transform_transpose (idx_t n, const float * y,
float *x) const;
/// works only if is_orthonormal
void reverse_transform (idx_t n, const float * xt,
float *x) const override;
/// compute A^T * A to set the is_orthonormal flag
void set_is_orthonormal ();
bool verbose;
~LinearTransform() override {}
};
/// Randomly rotate a set of vectors
struct RandomRotationMatrix: LinearTransform {
/// both d_in > d_out and d_out < d_in are supported
RandomRotationMatrix (int d_in, int d_out):
LinearTransform(d_in, d_out, false) {}
/// must be called before the transform is used
void init(int seed);
RandomRotationMatrix () {}
};
/** Applies a principal component analysis on a set of vectors,
* with optionally whitening and random rotation. */
struct PCAMatrix: LinearTransform {
/** after transformation the components are multiplied by
* eigenvalues^eigen_power
*
* =0: no whitening
* =-2: full whitening
*/
float eigen_power;
/// random rotation after PCA
bool random_rotation;
/// ratio between # training vectors and dimension
size_t max_points_per_d;
/// try to distribute output eigenvectors in this many bins
int balanced_bins;
/// Mean, size d_in
std::vector<float> mean;
/// eigenvalues of covariance matrix (= squared singular values)
std::vector<float> eigenvalues;
/// PCA matrix, size d_in * d_in
std::vector<float> PCAMat;
// the final matrix is computed after random rotation and/or whitening
explicit PCAMatrix (int d_in = 0, int d_out = 0,
float eigen_power = 0, bool random_rotation = false);
/// train on n vectors. If n < d_in then the eigenvector matrix
/// will be completed with 0s
void train(Index::idx_t n, const float* x) override;
/// copy pre-trained PCA matrix
void copy_from (const PCAMatrix & other);
/// called after mean, PCAMat and eigenvalues are computed
void prepare_Ab();
};
struct ProductQuantizer;
/** Applies a rotation to align the dimensions with a PQ to minimize
* the reconstruction error. Can be used before an IndexPQ or an
* IndexIVFPQ. The method is the non-parametric version described in:
*
* "Optimized Product Quantization for Approximate Nearest Neighbor Search"
* Tiezheng Ge, Kaiming He, Qifa Ke, Jian Sun, CVPR'13
*
*/
struct OPQMatrix: LinearTransform {
int M; ///< nb of subquantizers
int niter; ///< Number of outer training iterations
int niter_pq; ///< Number of training iterations for the PQ
int niter_pq_0; ///< same, for the first outer iteration
/// if there are too many training points, resample
size_t max_train_points;
bool verbose;
/// if non-NULL, use this product quantizer for training
/// should be constructed with (d_out, M, _)
ProductQuantizer * pq;
/// if d2 != -1, output vectors of this dimension
explicit OPQMatrix (int d = 0, int M = 1, int d2 = -1);
void train(Index::idx_t n, const float* x) override;
};
/** remap dimensions for intput vectors, possibly inserting 0s
* strictly speaking this is also a linear transform but we don't want
* to compute it with matrix multiplies */
struct RemapDimensionsTransform: VectorTransform {
/// map from output dimension to input, size d_out
/// -1 -> set output to 0
std::vector<int> map;
RemapDimensionsTransform (int d_in, int d_out, const int *map);
/// remap input to output, skipping or inserting dimensions as needed
/// if uniform: distribute dimensions uniformly
/// otherwise just take the d_out first ones.
RemapDimensionsTransform (int d_in, int d_out, bool uniform = true);
void apply_noalloc(idx_t n, const float* x, float* xt) const override;
/// reverse transform correct only when the mapping is a permuation
void reverse_transform(idx_t n, const float* xt, float* x) const override;
RemapDimensionsTransform () {}
};
/** per-vector normalization */
struct NormalizationTransform: VectorTransform {
float norm;
explicit NormalizationTransform (int d, float norm = 2.0);
NormalizationTransform ();
void apply_noalloc(idx_t n, const float* x, float* xt) const override;
/// Identity transform since norm is not revertible
void reverse_transform(idx_t n, const float* xt, float* x) const override;
};
/** Index that applies a LinearTransform transform on vectors before
* handing them over to a sub-index */
struct IndexPreTransform: Index {
std::vector<VectorTransform *> chain; ///! chain of tranforms
Index * index; ///! the sub-index
bool own_fields; ///! whether pointers are deleted in destructor
explicit IndexPreTransform (Index *index);
IndexPreTransform ();
/// ltrans is the last transform before the index
IndexPreTransform (VectorTransform * ltrans, Index * index);
void prepend_transform (VectorTransform * ltrans);
void train(idx_t n, const float* x) override;
void add(idx_t n, const float* x) override;
void add_with_ids(idx_t n, const float* x, const long* xids) override;
void reset() override;
/** removes IDs from the index. Not supported by all indexes.
*/
long remove_ids(const IDSelector& sel) override;
void search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const override;
void reconstruct (idx_t key, float * recons) const override;
void reconstruct_n (idx_t i0, idx_t ni, float *recons)
const override;
void search_and_reconstruct (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels,
float *recons) const override;
/// apply the transforms in the chain. The returned float * may be
/// equal to x, otherwise it should be deallocated.
const float * apply_chain (idx_t n, const float *x) const;
/// Reverse the transforms in the chain. May not be implemented for
/// all transforms in the chain or may return approximate results.
void reverse_chain (idx_t n, const float* xt, float* x) const;
~IndexPreTransform() override;
};
} // namespace faiss
#endif