diff --git a/pages/Wk06.qmd b/pages/Wk06.qmd index 3fee1eb..9ae294b 100644 --- a/pages/Wk06.qmd +++ b/pages/Wk06.qmd @@ -83,7 +83,7 @@ Alternatively, we can understand the maximum likelihood estimator $\hat{\mathbf{ Assume that $P(y|\mathbf{X})$ follows a normal distribution $\mathcal{N}(\mathbf{w}^T\mathbf{x},\mathbf{I})$, where $I$ represents the identity matrix for simplicity. -For the prior distribution of $\mathbf{w}$, a suitable choice is the normal distribution $\mathcal{N}(0,\gamma^2\mathbf{I})$, where $\gamma^2\mathbf{I} \in\mathbb{R}^{d\times d}$. +For the prior distribution of $\mathbf{w}$, a suitable choice is the normal distribution $\mathcal{N}(\mathbf{0},\gamma^2\mathbf{I})$, where $\gamma^2\mathbf{I} \in\mathbb{R}^{d\times d}$. Thus, we can write: