-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinference.py
72 lines (61 loc) · 2.09 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import time
import argparse
import numpy as np
import random
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import torch.backends.cudnn as cudnn
# from tensorboardX import SummaryWriter
import model
import evaluate
import data_utils
parser = argparse.ArgumentParser()
parser.add_argument('--dataset',
type = str,
help = 'dataset used for training, options: amazon_book, yelp, adressa',
default = 'amazon_book')
parser.add_argument('--model',
type = str,
help = 'model used for training. options: GMF, NeuMF-end',
default = 'GMF')
parser.add_argument('--drop_rate',
type = float,
help = 'drop rate',
default = 0.2)
parser.add_argument('--num_gradual',
type = int,
default = 30000,
help='how many epochs for linear drop rate {5, 10, 15}')
parser.add_argument("--top_k",
type=list,
default=[50, 100],
help="compute metrics@top_k")
parser.add_argument("--gpu",
type=str,
default="1",
help="gpu card ID")
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
cudnn.benchmark = True
data_path = '../data/{}/'.format(args.dataset)
model_path = './models/{}/'.format(args.dataset)
print("arguments: %s " %(args))
print("config model", args.model)
print("config data path", data_path)
print("config model path", model_path)
############################## PREPARE DATASET ##########################
train_data, valid_data, test_data_pos, user_pos, user_num ,item_num, train_mat, train_data_noisy = data_utils.load_all(args.dataset, data_path)
########################### CREATE MODEL #################################
test_model = torch.load('{}{}_{}-{}.pth'.format(model_path, args.model, args.drop_rate, args.num_gradual))
test_model.cuda()
def test(model, test_data_pos, user_pos):
top_k = args.top_k
model.eval()
_, recall, NDCG, _ = evaluate.test_all_users(model, 4096, item_num, test_data_pos, user_pos, top_k)
print("################### TEST ######################")
print("Recall {:.4f}-{:.4f}".format(recall[0], recall[1]))
print("NDCG {:.4f}-{:.4f}".format(NDCG[0], NDCG[1]))
test(test_model, test_data_pos, user_pos)