forked from hmartiro/kalman-cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkalman.cpp
65 lines (53 loc) · 1.23 KB
/
kalman.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/**
* Implementation of KalmanFilter class.
*
* @author: Hayk Martirosyan
* @date: 2014.11.15
*/
#include <iostream>
#include <stdexcept>
#include "kalman.hpp"
KalmanFilter::KalmanFilter(
double dt,
const Eigen::MatrixXd& A,
const Eigen::MatrixXd& C,
const Eigen::MatrixXd& Q,
const Eigen::MatrixXd& R,
const Eigen::MatrixXd& P)
: A(A), C(C), Q(Q), R(R), P0(P),
m(C.rows()), n(A.rows()), dt(dt), initialized(false),
I(n, n), x_hat(n), x_hat_new(n)
{
I.setIdentity();
}
KalmanFilter::KalmanFilter() {}
void KalmanFilter::init(double t0, const Eigen::VectorXd& x0) {
x_hat = x0;
P = P0;
this->t0 = t0;
t = t0;
initialized = true;
}
void KalmanFilter::init() {
x_hat.setZero();
P = P0;
t0 = 0;
t = t0;
initialized = true;
}
void KalmanFilter::update(const Eigen::VectorXd& y) {
if(!initialized)
throw std::runtime_error("Filter is not initialized!");
x_hat_new = A * x_hat;
P = A*P*A.transpose() + Q;
K = P*C.transpose()*(C*P*C.transpose() + R).inverse();
x_hat_new += K * (y - C*x_hat_new);
P = (I - K*C)*P;
x_hat = x_hat_new;
t += dt;
}
void KalmanFilter::update(const Eigen::VectorXd& y, double dt, const Eigen::MatrixXd A) {
this->A = A;
this->dt = dt;
update(y);
}