forked from alex/nyt-2020-election-scraper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprint-battleground-state-changes
executable file
·598 lines (517 loc) · 24.7 KB
/
print-battleground-state-changes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
#!/usr/bin/env python3
import csv
import collections
import datetime
import email.utils
import git
import hashlib
import itertools
import os
import simdjson
import subprocess
import json
from textwrap import dedent, indent
from tabulate import tabulate
from typing import Dict, Tuple
AK_INDEX = 0
AZ_INDEX = 3
GA_INDEX = 10
NC_INDEX = 27
NV_INDEX = 33
PA_INDEX = 38
BATTLEGROUND_STATES = ["Alaska", "Arizona", "Georgia", "North Carolina", "Nevada", "Pennsylvania"]
STATE_INDEXES = range(51) # 50 States + DC
CACHE_DIR = '_cache'
# Bump this with any changes to `fetch_all_records`
CACHE_VERSION = 2
def git_commits_for(path):
return subprocess.check_output(['git', 'log', "--format=%H", path]).strip().decode().splitlines()
def git_show(ref, name, repo_client):
commit_tree = repo_client.commit(ref).tree
return commit_tree[name].data_stream.read()
def fetch_all_records():
commits = git_commits_for("results.json")
repo = git.Repo('.', odbt=git.db.GitCmdObjectDB)
out = []
parser = simdjson.Parser()
for ref in commits:
cache_path = os.path.join(CACHE_DIR, ref[:2], ref[2:] + ".json")
if os.path.exists(cache_path):
with open(cache_path) as fh:
try:
record = simdjson.load(fh)
except ValueError:
continue
if record['version'] == CACHE_VERSION:
for row in record['rows']:
out.append(InputRecord(*row))
continue
blob = git_show(ref, 'results.json', repo)
json = parser.parse(blob)
timestamp = json['meta']['timestamp']
rows = []
for index in STATE_INDEXES:
race = json['data']['races'][index]
county_tot_exp_vote = [county['tot_exp_vote'] for county in race['counties']]
if all(county_tot_exp_vote):
tot_exp_vote = sum(county_tot_exp_vote)
else:
# NYT's data doesn't seem to have a county-by-county vote
# estimate for the following states: Connecticut, Massachusetts,
# Maine, New Hampshire, Rhode Island, and Vermont. So we have to
# fall back to the state wide one.
tot_exp_vote = race['tot_exp_vote']
record = InputRecord(
timestamp,
race['state_name'],
race['state_id'],
race['electoral_votes'],
race['candidates'].as_list(),
race['votes'],
tot_exp_vote,
race['precincts_total'],
race['precincts_reporting'],
{n['name']: n['votes'] for n in race['counties']},
)
rows.append(record)
out.append(record)
try:
os.makedirs(os.path.dirname(cache_path))
except FileExistsError:
pass
with open(cache_path, 'w') as fh:
simdjson.dump({"version": CACHE_VERSION, "rows": rows}, fh)
out.sort(key=lambda row: row.timestamp)
grouped = collections.defaultdict(list)
for row in out:
grouped[row.state_name].append(row)
return grouped
InputRecord = collections.namedtuple(
'InputRecord',
[
'timestamp',
'state_name',
'state_abbrev',
'electoral_votes',
'candidates',
'votes',
'expected_votes',
'precincts_total',
'precincts_reporting',
'counties',
],
)
# Information that is shared across loop iterations
IterationInfo = collections.namedtuple(
'IterationInfo',
['vote_diff', 'votes', 'precincts_reporting', 'hurdle', 'leading_candidate_name', 'counties', 'candidate_votes']
)
IterationSummary = collections.namedtuple(
'IterationSummary',
[
'timestamp',
'leading_candidate_name',
'trailing_candidate_name',
'leading_candidate_votes',
'trailing_candidate_votes',
'vote_differential',
'votes_remaining',
'new_votes',
'new_votes_relevant',
'new_votes_formatted',
'leading_candidate_partition',
'trailing_candidate_partition',
'precincts_reporting',
'precincts_total',
'hurdle',
'hurdle_change',
'hurdle_mov_avg',
'counties_partition',
'total_votes_count',
]
)
def compute_hurdle_sma(summarized_state_data, newest_votes, new_partition_pct, trailing_candidate_name):
"""
trend gain of last 30k (or more) votes for trailing candidate
"""
hurdle_moving_average = None
MIN_AGG_VOTES = 30000
agg_votes = newest_votes
agg_c2_votes = round(new_partition_pct * newest_votes)
step = 0
while step < len(summarized_state_data) and agg_votes < MIN_AGG_VOTES:
this_summary = summarized_state_data[step]
step += 1
if this_summary.new_votes_relevant > 0:
if this_summary.trailing_candidate_name == trailing_candidate_name:
trailing_candidate_partition = this_summary.trailing_candidate_partition
else:
# Broken for 3 way race
trailing_candidate_partition = this_summary.leading_candidate_partition
if this_summary.new_votes_relevant + agg_votes > MIN_AGG_VOTES:
subset_pct = (MIN_AGG_VOTES - agg_votes) / float(this_summary.new_votes_relevant)
agg_votes += round(this_summary.new_votes_relevant * subset_pct)
agg_c2_votes += round(trailing_candidate_partition * this_summary.new_votes_relevant * subset_pct)
else:
agg_votes += this_summary.new_votes_relevant
agg_c2_votes += round(trailing_candidate_partition * this_summary.new_votes_relevant)
if agg_votes:
hurdle_moving_average = float(agg_c2_votes) / agg_votes
return hurdle_moving_average
def string_summary(summary):
thirty_ago = (datetime.datetime.utcnow() - datetime.timedelta(minutes=30))
bumped = summary.leading_candidate_partition
bumped_name = summary.leading_candidate_name
if bumped < summary.trailing_candidate_partition:
bumped = summary.trailing_candidate_partition
bumped_name = summary.trailing_candidate_name
bumped -= 0.50
lead_part = summary.leading_candidate_partition - 50
visible_hurdle = f'{summary.trailing_candidate_name} needs {summary.hurdle:.2%}' if summary.hurdle > 0 else 'Unknown'
return [
f'{summary.timestamp.strftime("%Y-%m-%d %H:%M")}',
'***' if summary.timestamp > thirty_ago else '---',
f'{summary.leading_candidate_name} up {summary.vote_differential:,}',
f'Left (est.): {summary.votes_remaining:,}' if summary.votes_remaining > 0 else 'Unknown',
f'Δ: {summary.new_votes_formatted} ({f"{bumped_name} +{bumped:5.01%}" if (summary.leading_candidate_partition or summary.trailing_candidate_partition) else "n/a"})',
f'{summary.precincts_reporting/summary.precincts_total:.2%} precincts',
f'{visible_hurdle}',
f'& trends {f"{summary.hurdle_mov_avg:.2%}" if summary.hurdle_mov_avg else "n/a"}'
]
def html_write_state_head(state: str, state_slug: str, summary: IterationSummary):
percentage_candidate1 = summary.leading_candidate_votes / summary.total_votes_count
percentage_candidate2 = summary.trailing_candidate_votes / summary.total_votes_count
return f'''
<thead class="thead-light">
<tr>
<td class="text-left flag-bg" style="background-image: url('flags/{state_slug}.svg')" colspan="9">
<span class="has-tip" data-toggle="tooltip" title="Number of electoral votes contributed by this state and total votes by each candidate.">
<span class="statename">{state_formatted_name[state]}</span>
</span>
<br>
{summary.leading_candidate_name} leads with {summary.leading_candidate_votes:,} votes ({percentage_candidate1:5.01%}), {summary.trailing_candidate_name} trails with {summary.trailing_candidate_votes:,} votes ({percentage_candidate2:5.01%}).
</td>
</tr>
<tr>
<th class="has-tip" data-toggle="tooltip" title="When did this batch of votes get reported?">Timestamp</th>
<th class="has-tip" data-toggle="tooltip" title="Which candidate currently leads this state?">In The Lead</th>
<th class="has-tip numeric" data-toggle="tooltip" title="How many votes separate the two candidates?">Vote Margin</th>
<th class="has-tip numeric" data-toggle="tooltip" title="Approximately how many votes are remaining to be counted? These values might be off! Consult state websites and officials for the most accurate and up-to-date figures.">Votes Remaining (est.)</th>
<th class="has-tip numeric" data-toggle="tooltip" title="How many votes were reported in this batch, excluding third-party votes. If available, an estimated county-level breakdown is shown, but it might be inaccurate!">Change</th>
<th class="has-tip" data-toggle="tooltip" title="How were the votes in this batch, excluding third-party votes, split between the two candidates?">Batch Breakdown</th>
<th class="has-tip" data-toggle="tooltip" title="How has the trailing candidate's share of recent batches trended? Computed using a moving average of previous 30k votes.">Batch Trend</th>
<th class="has-tip" data-toggle="tooltip" title="What percentage of estimated remaining votes (excluding third-party votes) does the trailing candidate need to take the lead? Since this assumes the proportion of third-party votes remains the same, this might deviate from the breakdown in batches where this is not the case.">Hurdle</th>
</tr>
</thead>
'''
def html_summary(state_slug: str, summary: IterationSummary, always_visible: bool):
if summary.counties_partition:
counties_partition = sorted(summary.counties_partition.items(), key=lambda x: x[1], reverse=True)
counties_total = sum(summary.counties_partition.values())
counties_tooltip_attributes = (
'class="has-tip numeric" data-toggle="tooltip" data-html="true" data-title="' +
'<strong>Estimated county-level breakdown:</strong><br>' +
'<br>'.join(f'<strong>{name}:</strong> {value / counties_total:.0%}' for name, value in counties_partition) +
'" title="' +
'Estimated county-level breakdown: ' +
', '.join(f'{name}: {value / counties_total:.0%}' for name, value in counties_partition) +
'"'
)
else:
counties_tooltip_attributes = 'class="numeric"'
shown_votes_remaining = f'{summary.votes_remaining:,}' if summary.votes_remaining > 0 else 'Unknown'
always_visible_attribute = ' class="always-visible"' if always_visible else ''
html = f'''
<tr id="{state_slug}-{summary.timestamp.isoformat()}"{always_visible_attribute}>
<td class="timestamp">{summary.timestamp.strftime('%Y-%m-%d %H:%M:%S')} UTC</td>
<td class="{summary.leading_candidate_name}">{summary.leading_candidate_name}</td>
<td class="numeric">{summary.vote_differential:,}</td>
<td class="numeric">{shown_votes_remaining}</td>
<td {counties_tooltip_attributes}>{summary.new_votes_formatted}</td>
'''
if summary.leading_candidate_partition == 0 and summary.trailing_candidate_partition == 0:
html += '<td>N/A</td>'
elif summary.leading_candidate_partition >= 0 or summary.trailing_candidate_partition >= 0:
# Since both must now positive or zero, so we're abs them because `-0`
# is a thing for floats.
html += f'''
<td>
{summary.leading_candidate_name} {abs(summary.leading_candidate_partition):5.01%} /
{abs(summary.trailing_candidate_partition):5.01%} {summary.trailing_candidate_name}
</td>
'''
else:
html += '<td>Unknown</td>'
if summary.hurdle_mov_avg and summary.hurdle_mov_avg >= 0:
html += f'''
<td>
{summary.trailing_candidate_name} is averaging {summary.hurdle_mov_avg:5.01%}
</td>
'''
elif summary.hurdle_mov_avg and summary.hurdle_mov_avg < 0:
html += '<td>Unknown</td>'
else:
html += '<td>N/A</td>'
visible_hurdle = f'{summary.trailing_candidate_name} needs {summary.hurdle:.1%}' if summary.hurdle > 0 else 'Unknown'
html += f'''
<td class="hurdle">{visible_hurdle}</td>
</tr>
'''
return html
# Capture the time at the top of the main script logic so it's closer to when the pull of data happened
scrape_time = datetime.datetime.utcnow()
# Dict[str, List[InputRecords]]
records = fetch_all_records()
# Where we’ll aggregate the data from the JSON files
summarized = {}
state_formatted_name = {}
state_abbrev = {}
def json_to_summary(
state_name: str,
row: InputRecord,
last_iteration_info: IterationInfo,
latest_candidate_votes: Dict[str, int],
expected_votes: int,
batch_time: datetime.datetime,
) -> Tuple[IterationInfo, IterationSummary]:
timestamp = datetime.datetime.strptime(row.timestamp, '%Y-%m-%dT%H:%M:%S.%fZ')
# Retrieve relevant data from the state’s JSON blob
candidate1 = row.candidates[0] # Leading candidate
candidate2 = row.candidates[1] # Trailing candidate
candidate1_name = candidate1['last_name']
candidate2_name = candidate2['last_name']
candidate1_votes = candidate1['votes']
candidate2_votes = candidate2['votes']
candidate1_key = candidate1['candidate_key']
candidate2_key = candidate2['candidate_key']
total_votes = sum([candidate['votes'] for candidate in row.candidates])
vote_diff = candidate1_votes - candidate2_votes
votes = row.votes
votes_remaining = expected_votes - votes
precincts_reporting = row.precincts_reporting
precincts_total = row.precincts_total
new_votes = 0 if last_iteration_info.votes is None else (votes - last_iteration_info.votes)
counties_partition = {}
if new_votes != 0:
assert row.counties.keys() == last_iteration_info.counties.keys()
for k, v in row.counties.items():
partition = (v - last_iteration_info.counties[k])
if partition > 0:
counties_partition[k] = partition
bumped = candidate1_name != last_iteration_info.leading_candidate_name
# If we're trying to estimate the proportion of third-party votes across
# the entire vote population, we want to use the largest sample size we
# have - i.e. the newest data we've received
latest_relevant_proportion = (latest_candidate_votes[candidate1_key] + latest_candidate_votes[candidate2_key]) / sum(latest_candidate_votes.values())
votes_remaining_relevant = votes_remaining * latest_relevant_proportion
hurdle = (vote_diff + votes_remaining_relevant) / (2 * votes_remaining_relevant) if votes_remaining_relevant > 0 else 0
candidate_votes = {c['candidate_key']: c['votes'] for c in row.candidates}
# We need to use the votes delta for our two leading candidates, not for
# all the candidates, when calculating the breakdown - especially since our
# data source frequently revises write-in and third party figures.
if new_votes == 0:
new_votes_relevant = 0
else:
new_votes_relevant = sum(candidate_votes[k] - last_iteration_info.candidate_votes[k] for k in (candidate1_key, candidate2_key))
if new_votes_relevant == 0:
trailing_candidate_partition = 0
leading_candidate_partition = 0
else:
trailing_candidate_partition = (candidate2_votes - last_iteration_info.candidate_votes[candidate2_key]) / new_votes_relevant
leading_candidate_partition = 1 - trailing_candidate_partition
# Info we’ll need for the next loop iteration
iteration_info = IterationInfo(
vote_diff=vote_diff,
votes=votes,
precincts_reporting=precincts_reporting,
hurdle=hurdle,
leading_candidate_name=candidate1_name,
counties=row.counties,
candidate_votes=candidate_votes,
)
# Compute aggregate of last 5 hurdle, if available
hurdle_mov_avg = compute_hurdle_sma(summarized[state_name], new_votes_relevant, trailing_candidate_partition, candidate2_name)
summary = IterationSummary(
batch_time,
candidate1_name,
candidate2_name,
candidate1_votes,
candidate2_votes,
vote_diff,
votes_remaining,
new_votes,
new_votes_relevant,
f"{new_votes_relevant:7,}" if new_votes_relevant >= 0 else "Unknown",
leading_candidate_partition,
trailing_candidate_partition,
precincts_reporting,
precincts_total,
hurdle,
hurdle-(1-last_iteration_info.hurdle if bumped else last_iteration_info.hurdle),
hurdle_mov_avg,
counties_partition,
total_votes,
)
return iteration_info, summary
states_updated = []
for rows in records.values():
latest_batch_time = datetime.datetime.strptime(rows[-1].timestamp, '%Y-%m-%dT%H:%M:%S.%fZ')
state_name = rows[0].state_name
summarized[state_name] = []
state_formatted_name[state_name] = f"{state_name} (EV: {rows[0].electoral_votes})"
state_abbrev[state_name] = rows[0].state_abbrev
last_iteration_info = IterationInfo(
vote_diff=None,
votes=None,
precincts_reporting=None,
hurdle=0,
leading_candidate_name=None,
counties=None,
candidate_votes=None,
)
latest_candidate_votes = {c['candidate_key']: c['votes'] for c in rows[-1].candidates}
latest_expected_votes = rows[-1].expected_votes
for row in rows:
iteration_info, summary = json_to_summary(
state_name,
row,
last_iteration_info,
latest_candidate_votes,
latest_expected_votes,
batch_time=datetime.datetime.strptime(row.timestamp, '%Y-%m-%dT%H:%M:%S.%fZ'),
)
# Avoid writing duplicate rows
if last_iteration_info == iteration_info:
continue
# Generate the string we’ll output and store it
summarized[state_name].insert(0, summary)
# Save info for the next iteration
last_iteration_info = iteration_info
if summarized[state_name] and summarized[state_name][0].timestamp == latest_batch_time:
states_updated.append(state_name)
# Pull out the battleground state summaries
battlegrounds_summarized = {
state: summarized[state]
for state in BATTLEGROUND_STATES
}
battleground_states_updated = [
state for state in states_updated
if state in BATTLEGROUND_STATES
]
# print the summaries
batch_time = max(itertools.chain.from_iterable(battlegrounds_summarized.values()), key=lambda s: s.timestamp).timestamp
with open("results.json", "r", encoding='utf8') as f:
RESULTS_HASH = hashlib.sha256(f.read().encode('utf8')).hexdigest()
def txt_output(path, summarized, states_updated):
with open(path, "w") as f:
print(tabulate([
["Last updated:", scrape_time.strftime("%Y-%m-%d %H:%M UTC")],
["Latest batch received: {}".format(f"({', '.join(states_updated)})" if states_updated else ""), batch_time.strftime("%Y-%m-%d %H:%M UTC")],
["Prettier web version:", "https://alex.github.io/nyt-2020-election-scraper/battleground-state-changes.html"],
]), file=f)
for (state, timestamped_results) in sorted(summarized.items()):
print(f'\n{state_formatted_name[state]} Total Votes: ({timestamped_results[0][1]}: {timestamped_results[0][3]:,}, {timestamped_results[0][2]}: {timestamped_results[0][4]:,})', file=f)
print(tabulate([string_summary(summary) for summary in timestamped_results]), file=f)
txt_output("battleground-state-changes.txt", battlegrounds_summarized, battleground_states_updated)
txt_output("all-state-changes.txt", summarized, states_updated)
def html_table(summarized):
# The NYTimes array of states is not sorted alphabetically, so we'll use `sorted`
for (state, timestamped_results) in sorted(summarized.items()):
# 'Alaska (3)' -> 'alaska', 'North Carolina (15)' -> 'north-carolina'
state_slug = state.split('(')[0].strip().replace(' ', '-').lower()
yield f"<div class='table-responsive'><table id='{state_slug}' class='table table-bordered'>"
yield html_write_state_head(state, state_slug, timestamped_results[0])
visible_rows = 0
last_change_value = None
for summary in timestamped_results:
change_value = summary.new_votes_formatted.strip()
if visible_rows >= 3:
always_visible = False
elif {change_value, last_change_value} <= {'0', 'Unknown'}:
always_visible = False
else:
always_visible = True
visible_rows += 1
yield html_summary(state_slug=state_slug, summary=summary, always_visible=always_visible)
last_change_value = change_value
yield "</table></div><hr>"
def html_output(path, html_table, states_updated, other_page_html):
html_template = "<!-- Don't update me by hand, I'm generated by a program -->\n\n"
with open("battleground-state-changes.html.tmpl", "r", encoding='utf8') as f:
html_template += f.read()
TEMPLATE_HASH = hashlib.sha256(html_template.encode('utf8')).hexdigest()
states_updated_abbrev = [state_abbrev[state_name] for state_name in states_updated]
with open(path,"w", encoding='utf8') as f:
page_metadata = json.dumps({
"template_hash": TEMPLATE_HASH,
"results_hash": RESULTS_HASH,
"states_updated": states_updated_abbrev,
})
html = html_template \
.replace('{% TABLES %}', "\n".join(html_table)) \
.replace('{% SCRAPE_TIME %}', scrape_time.strftime('%Y-%m-%d %H:%M:%S UTC')) \
.replace('{% BATCH_TIME %}', batch_time.strftime('%Y-%m-%d %H:%M:%S UTC')) \
.replace('{% LAST_BATCH %}', f"({', '.join(states_updated)})" if states_updated else "") \
.replace('{% TEMPLATE_HASH %}', TEMPLATE_HASH) \
.replace('{% PAGE_METADATA %}', page_metadata) \
.replace('{% OTHER_PAGE_TEXT %}', other_page_html)
f.write(html)
html_output(
"battleground-state-changes.html",
html_table(battlegrounds_summarized),
battleground_states_updated,
'Data for all 50 states and DC is <a href="all-state-changes.html">also available</a>.'
)
html_output(
"all-state-changes.html",
html_table(summarized),
states_updated,
'View <a href="battleground-state-changes.html">battleground states only</a>.'
)
def csv_output(path, summarized):
with open(path, 'w') as csvfile:
wr = csv.writer(csvfile)
wr.writerow(('state',) + IterationSummary._fields)
for state, results in summarized.items():
for row in results:
wr.writerow((state_formatted_name[state],) + row)
csv_output('battleground-state-changes.csv', battlegrounds_summarized)
csv_output('all-state-changes.csv', summarized)
def rss_output(path, summarized):
with open(path, 'w') as rssfile:
print(dedent(f'''
<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
<channel>
<title>NYT 2020 Election Scraper RSS Feed</title>
<link>https://alex.github.io/nyt-2020-election-scraper/battleground-state-changes.html</link>
<description>Latest results from battleground states.</description>
<lastBuildDate>{email.utils.formatdate(batch_time.timestamp())}</lastBuildDate>
''').strip(), file=rssfile)
for state, results in summarized.items():
try:
result = results[0]
except IndexError:
continue
state_slug = state.split('(')[0].strip().replace(' ', '-').lower()
timestamp = result.timestamp.timestamp()
print(indent(dedent(f'''
<item>
<description>{state_formatted_name[state]}: {result.leading_candidate_name} +{result.vote_differential}</description>
<pubDate>{email.utils.formatdate(timestamp)}</pubDate>
<guid isPermaLink="false">{state_slug}@{timestamp}</guid>
</item>
''').strip(), " "), file=rssfile)
print(dedent('''
</channel>
</rss>'''
), file=rssfile)
rss_output('battleground-state-changes.xml', battlegrounds_summarized)
rss_output('all-state-changes.xml', summarized)
# this file is deprecated and should not be used! it will be removed soontm
with open("notification-updates.json", "w") as f:
f.write(json.dumps({
"_comment": "this file is deprecated and should not be used",
"results_hash": RESULTS_HASH,
"states_updated": battleground_states_updated,
}))