-
Notifications
You must be signed in to change notification settings - Fork 11
/
vmf.py
159 lines (122 loc) · 4.66 KB
/
vmf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""
Generate multivariate von Mises Fisher samples.
This solution originally appears here:
http://stats.stackexchange.com/questions/156729/sampling-from-von-mises-fisher-distribution-in-python
Also see:
Sampling from vMF on S^2:
https://www.mitsuba-renderer.org/~wenzel/files/vmf.pdf
http://www.stat.pitt.edu/sungkyu/software/randvonMisesFisher3.pdf
This code was taken from the following project:
https://github.com/clara-labs/spherecluster
"""
import numpy as np
__all__ = ["sample_vMF", "sample_vMF_sequential"]
def sample_vMF_sequential(mu, kappa, num_samples):
"""Generate num_samples N-dimensional samples from von Mises Fisher
distribution around center mu \in R^N with concentration kappa.
"""
if len(mu.shape) == 1:
mu = mu.reshape(1, -1)
assert len(mu.shape) == 2
dim = mu.shape[1]
# assert len(mu) == num_samples
result = np.zeros((num_samples, dim))
for nn in range(num_samples):
# sample offset from center (on sphere) with spread kappa
w = _sample_weight_sequential(kappa, dim)
if len(mu) == 1:
n_mu = mu[0]
else:
n_mu = mu[nn]
# sample a point v on the unit sphere that's orthogonal to mu
v = _sample_orthonormal_to_sequential(n_mu)
# compute new point
result[nn, :] = v * np.sqrt(1.0 - w ** 2) + w * n_mu
return result
def sample_vMF(mu, kappa, num_samples):
"""Generate num_samples N-dimensional samples from von Mises Fisher
distribution around center mu \in R^N with concentration kappa.
"""
if len(mu.shape) == 1:
mu = mu.reshape(1, -1)
mu = np.repeat(mu, num_samples, 0)
assert len(mu.shape) == 2
dim = mu.shape[1]
# sample offset from center (on sphere) with spread kappa
w = _sample_weight(kappa, dim, num_samples)
# sample a point v on the unit sphere that's orthogonal to mu
v = _sample_orthonormal_to(mu)
# compute new point
result = v * np.sqrt(1.0 - w ** 2).reshape(-1, 1) + w.reshape(-1, 1) * mu
return result
def _sample_weight_sequential(kappa, dim):
"""Rejection sampling scheme for sampling distance from center on
surface of the sphere.
"""
dim = dim - 1 # since S^{n-1}
b = dim / (np.sqrt(4.0 * kappa ** 2 + dim ** 2) + 2 * kappa)
x = (1.0 - b) / (1.0 + b)
c = kappa * x + dim * np.log(1 - x ** 2)
while True:
z = np.random.beta(dim / 2.0, dim / 2.0)
w = (1.0 - (1.0 + b) * z) / (1.0 - (1.0 - b) * z)
u = np.random.uniform(low=0, high=1)
if kappa * w + dim * np.log(1.0 - x * w) - c >= np.log(u):
return w
def _sample_weight(kappa, dim, num_samples):
"""Rejection sampling scheme for sampling distance from center on
surface of the sphere.
"""
dim = dim - 1 # since S^{n-1}
b = dim / (np.sqrt(4.0 * kappa ** 2 + dim ** 2) + 2 * kappa)
x = (1.0 - b) / (1.0 + b)
c = kappa * x + dim * np.log(1 - x ** 2)
results = []
n = 0
while True:
z = np.random.beta(dim / 2.0, dim / 2.0, size=num_samples)
w = (1.0 - (1.0 + b) * z) / (1.0 - (1.0 - b) * z)
u = np.random.uniform(low=0, high=1, size=num_samples)
mask = kappa * w + dim * np.log(1.0 - x * w) - c >= np.log(u)
results.append(w[mask])
n += sum(mask)
if n >= num_samples:
break
results = np.concatenate(results)[:num_samples]
return results
def _sample_orthonormal_to_sequential(mu):
"""Sample point on sphere orthogonal to mu."""
v = np.random.randn(mu.shape[0])
proj_mu_v = mu * np.dot(mu, v) / np.linalg.norm(mu)
orthto = v - proj_mu_v
return orthto / np.linalg.norm(orthto)
def _sample_orthonormal_to(mu):
"""Sample point on sphere orthogonal to mu."""
v = np.random.randn(mu.shape[0], mu.shape[1])
proj_mu_v = (
mu
* np.einsum("ij,ij -> i", mu, v).reshape(-1, 1)
/ np.linalg.norm(mu, axis=-1, keepdims=True)
)
orthto = v - proj_mu_v
return orthto / np.linalg.norm(orthto, axis=-1, keepdims=True)
if __name__ == "__main__":
import timeit
def setup_mu(num_samples, n):
mu = np.random.normal(0.0, 1.0, size=(num_samples, n))
mu /= np.sqrt(np.sum(mu ** 2, -1, keepdims=True))
return mu
print(
timeit.timeit(
"n=1000; sample_vMF(mu=setup_mu(n, 10), kappa=1, num_samples=n)",
setup="from __main__ import setup_mu, sample_vMF, sample_vMF_p",
number=1000,
)
)
print(
timeit.timeit(
"n=1000; sample_vMF_p(mu=setup_mu(n, 10), kappa=1, num_samples=n)",
setup="from __main__ import setup_mu, sample_vMF, sample_vMF_p",
number=1000,
)
)