diff --git a/R/fitTsfm.R b/R/fitTsfm.R index 32546d10..1f88d967 100644 --- a/R/fitTsfm.R +++ b/R/fitTsfm.R @@ -51,11 +51,11 @@ #' with \code{xts} objects internally and colnames won't be left as they are. #' } #' -#' @param asset.names vector of asset names, whose returns are the dependent +#' @param asset.names vector of syntactically valid asset names, whose returns are the dependent #' variable in the factor model. -#' @param factor.names vector containing names of the factors. -#' @param mkt.name name of the column for market returns. Default is \code{NULL}. -#' @param rf.name name of the column for the risk free rate; if excess returns +#' @param factor.names vector containing syntactically valid names of the factors. +#' @param mkt.name syntactically valid name of the column for market returns. Default is \code{NULL}. +#' @param rf.name syntactically valid name of the column for the risk free rate; if excess returns #' should be calculated for all assets and factors. Default is \code{NULL}. #' @param data vector, matrix, data.frame, xts, timeSeries or zoo object #' containing the columns \code{asset.names}, \code{factor.names}, and @@ -71,8 +71,8 @@ #' @return \code{fitTsfm} returns an object of class \code{"tsfm"} for which #' \code{print}, \code{plot}, \code{predict} and \code{summary} methods exist. #' -#' The generic accessor functions \code{coef}, \code{fitted} and -#' \code{residuals} extract various useful features of the fit object. +#' The generic functions \code{coef}, \code{fitted} and \code{residuals} +#' extract various useful features of the fit object. #' Additionally, \code{fmCov} computes the covariance matrix for asset returns #' based on the fitted factor model. #' @@ -90,9 +90,9 @@ #' \code{variable.selection="lars"}} #' \item{call}{the matched function call.} #' \item{data}{xts data object containing the asset(s) and factor(s) returns.} -#' \item{asset.names}{asset.names as input.} -#' \item{factor.names}{factor.names as input.} -#' \item{mkt.name}{mkt.name as input} +#' \item{asset.names}{syntactically valid asset.names as input.} +#' \item{factor.names}{syntactically valid factor.names as input.} +#' \item{mkt.name}{syntactically valid mkt.name as input} #' \item{fit.method}{fit.method as input.} #' \item{variable.selection}{variable.selection as input.} #' Where N is the number of assets, K is the number of factors and T is the @@ -123,8 +123,12 @@ #' \code{\link{paFm}} for Performance Attribution. #' #' @examples +#' # load data #' data(managers, package = 'PerformanceAnalytics') -#' colnames(managers) = gsub(" ",'.',colnames(managers)) +#' # Make syntactically valid column names +#' colnames(managers) +#' colnames(managers) <- make.names( colnames(managers)) +#' colnames(managers) #' #' fit <- fitTsfm(asset.names=colnames(managers[,(1:6)]), #' factor.names=colnames(managers[,(7:9)]), data=managers) @@ -172,6 +176,11 @@ fitTsfm <- function(asset.names, factor.names, mkt.name=NULL, rf.name=NULL, if (missing(factor.names) && !is.null(mkt.name)) { factor.names <- NULL } + if (length(grep(" ", colnames(data))) > 0) { + stop("Please use syntactically valid column names for continuity with merge.xts. + See 'make.names' function and associated documentation. Also, this conversation: + https://stackoverflow.com/questions/9195718/variable-name-restrictions-in-r") + } # extract arguments to pass to different fit and variable selection functions decay <- control$decay diff --git a/man/fitTsfm.Rd b/man/fitTsfm.Rd index 72ee2f73..b745e70e 100644 --- a/man/fitTsfm.Rd +++ b/man/fitTsfm.Rd @@ -26,14 +26,14 @@ fitTsfm( \method{residuals}{tsfm}(object, ...) } \arguments{ -\item{asset.names}{vector of asset names, whose returns are the dependent +\item{asset.names}{vector of syntactically valid asset names, whose returns are the dependent variable in the factor model.} -\item{factor.names}{vector containing names of the factors.} +\item{factor.names}{vector containing syntactically valid names of the factors.} -\item{mkt.name}{name of the column for market returns. Default is \code{NULL}.} +\item{mkt.name}{syntactically valid name of the column for market returns. Default is \code{NULL}.} -\item{rf.name}{name of the column for the risk free rate; if excess returns +\item{rf.name}{syntactically valid name of the column for the risk free rate; if excess returns should be calculated for all assets and factors. Default is \code{NULL}.} \item{data}{vector, matrix, data.frame, xts, timeSeries or zoo object @@ -58,8 +58,8 @@ See details. Default is "LS".} \code{fitTsfm} returns an object of class \code{"tsfm"} for which \code{print}, \code{plot}, \code{predict} and \code{summary} methods exist. -The generic accessor functions \code{coef}, \code{fitted} and -\code{residuals} extract various useful features of the fit object. +The generic functions \code{coef}, \code{fitted} and \code{residuals} +extract various useful features of the fit object. Additionally, \code{fmCov} computes the covariance matrix for asset returns based on the fitted factor model. @@ -77,9 +77,9 @@ the \code{fit.method="Robust"}, or class \code{lars} if \code{variable.selection="lars"}} \item{call}{the matched function call.} \item{data}{xts data object containing the asset(s) and factor(s) returns.} -\item{asset.names}{asset.names as input.} -\item{factor.names}{factor.names as input.} -\item{mkt.name}{mkt.name as input} +\item{asset.names}{syntactically valid asset.names as input.} +\item{factor.names}{syntactically valid factor.names as input.} +\item{mkt.name}{syntactically valid mkt.name as input} \item{fit.method}{fit.method as input.} \item{variable.selection}{variable.selection as input.} Where N is the number of assets, K is the number of factors and T is the @@ -138,8 +138,12 @@ with \code{xts} objects internally and colnames won't be left as they are. } } \examples{ + # load data data(managers, package = 'PerformanceAnalytics') -colnames(managers) = gsub(" ",'.',colnames(managers)) + # Make syntactically valid column names +colnames(managers) +colnames(managers) <- make.names( colnames(managers)) +colnames(managers) fit <- fitTsfm(asset.names=colnames(managers[,(1:6)]), factor.names=colnames(managers[,(7:9)]), data=managers)