editor_options | output | ||||
---|---|---|---|---|---|
|
pdf_document |
We import all the required local libraries libraries
python jupyter={"outputs_hidden": true} pip install --upgrade --user nbconvert
python jupyter={"outputs_hidden": true} pip install --upgrade jupyter nbconvert
pip install notebook --upgrade
Requirement already satisfied: notebook in /Users/brashonford/anaconda3/lib/python3.11/site-packages (7.0.7)
Requirement already satisfied: jupyter-server<3,>=2.4.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from notebook) (2.12.5)
Requirement already satisfied: jupyterlab-server<3,>=2.22.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from notebook) (2.25.2)
Requirement already satisfied: jupyterlab<5,>=4.0.2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from notebook) (4.0.12)
Requirement already satisfied: notebook-shim<0.3,>=0.2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from notebook) (0.2.2)
Requirement already satisfied: tornado>=6.2.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from notebook) (6.3.2)
Requirement already satisfied: anyio>=3.1.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (3.5.0)
Requirement already satisfied: argon2-cffi in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (21.3.0)
Requirement already satisfied: jinja2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (3.1.2)
Requirement already satisfied: jupyter-client>=7.4.4 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (7.4.9)
Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (5.3.0)
Requirement already satisfied: jupyter-events>=0.9.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (0.9.0)
Requirement already satisfied: jupyter-server-terminals in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (0.5.2)
Requirement already satisfied: nbconvert>=6.4.4 in /Users/brashonford/.local/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (7.14.2)
Requirement already satisfied: nbformat>=5.3.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (5.7.0)
Requirement already satisfied: overrides in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (7.7.0)
Requirement already satisfied: packaging in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (23.0)
Requirement already satisfied: prometheus-client in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (0.14.1)
Requirement already satisfied: pyzmq>=24 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (25.1.2)
Requirement already satisfied: send2trash>=1.8.2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (1.8.2)
Requirement already satisfied: terminado>=0.8.3 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (0.17.1)
Requirement already satisfied: traitlets>=5.6.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (5.7.1)
Requirement already satisfied: websocket-client in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-server<3,>=2.4.0->notebook) (0.58.0)
Requirement already satisfied: async-lru>=1.0.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyterlab<5,>=4.0.2->notebook) (2.0.4)
Requirement already satisfied: ipykernel in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyterlab<5,>=4.0.2->notebook) (6.19.2)
Requirement already satisfied: jupyter-lsp>=2.0.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyterlab<5,>=4.0.2->notebook) (2.2.2)
Requirement already satisfied: babel>=2.10 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyterlab-server<3,>=2.22.1->notebook) (2.11.0)
Requirement already satisfied: json5>=0.9.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyterlab-server<3,>=2.22.1->notebook) (0.9.6)
Requirement already satisfied: jsonschema>=4.18.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyterlab-server<3,>=2.22.1->notebook) (4.21.1)
Requirement already satisfied: requests>=2.31 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyterlab-server<3,>=2.22.1->notebook) (2.31.0)
Requirement already satisfied: idna>=2.8 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook) (3.4)
Requirement already satisfied: sniffio>=1.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook) (1.2.0)
Requirement already satisfied: pytz>=2015.7 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from babel>=2.10->jupyterlab-server<3,>=2.22.1->notebook) (2022.7)
Requirement already satisfied: MarkupSafe>=2.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jinja2->jupyter-server<3,>=2.4.0->notebook) (2.1.1)
Requirement already satisfied: attrs>=22.2.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (23.2.0)
Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (2023.12.1)
Requirement already satisfied: referencing>=0.28.4 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (0.33.0)
Requirement already satisfied: rpds-py>=0.7.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (0.17.1)
Requirement already satisfied: entrypoints in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-client>=7.4.4->jupyter-server<3,>=2.4.0->notebook) (0.4)
Requirement already satisfied: nest-asyncio>=1.5.4 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-client>=7.4.4->jupyter-server<3,>=2.4.0->notebook) (1.5.6)
Requirement already satisfied: python-dateutil>=2.8.2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-client>=7.4.4->jupyter-server<3,>=2.4.0->notebook) (2.8.2)
Requirement already satisfied: platformdirs>=2.5 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-core!=5.0.*,>=4.12->jupyter-server<3,>=2.4.0->notebook) (2.5.2)
Requirement already satisfied: python-json-logger>=2.0.4 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook) (2.0.7)
Requirement already satisfied: pyyaml>=5.3 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook) (6.0)
Requirement already satisfied: rfc3339-validator in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook) (0.1.4)
Requirement already satisfied: rfc3986-validator>=0.1.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook) (0.1.1)
Requirement already satisfied: beautifulsoup4 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (4.12.2)
Requirement already satisfied: bleach!=5.0.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (4.1.0)
Requirement already satisfied: defusedxml in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (0.7.1)
Requirement already satisfied: jupyterlab-pygments in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (0.1.2)
Requirement already satisfied: mistune<4,>=2.0.3 in /Users/brashonford/.local/lib/python3.11/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (3.0.2)
Requirement already satisfied: nbclient>=0.5.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (0.5.13)
Requirement already satisfied: pandocfilters>=1.4.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (1.5.0)
Requirement already satisfied: pygments>=2.4.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (2.15.1)
Requirement already satisfied: tinycss2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (1.2.1)
Requirement already satisfied: fastjsonschema in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->notebook) (2.16.2)
Requirement already satisfied: charset-normalizer<4,>=2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from requests>=2.31->jupyterlab-server<3,>=2.22.1->notebook) (2.0.4)
Requirement already satisfied: urllib3<3,>=1.21.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from requests>=2.31->jupyterlab-server<3,>=2.22.1->notebook) (1.26.16)
Requirement already satisfied: certifi>=2017.4.17 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from requests>=2.31->jupyterlab-server<3,>=2.22.1->notebook) (2023.7.22)
Requirement already satisfied: ptyprocess in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from terminado>=0.8.3->jupyter-server<3,>=2.4.0->notebook) (0.7.0)
Requirement already satisfied: argon2-cffi-bindings in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from argon2-cffi->jupyter-server<3,>=2.4.0->notebook) (21.2.0)
Requirement already satisfied: appnope in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.1.2)
Requirement already satisfied: comm>=0.1.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.1.2)
Requirement already satisfied: debugpy>=1.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipykernel->jupyterlab<5,>=4.0.2->notebook) (1.6.7)
Requirement already satisfied: ipython>=7.23.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipykernel->jupyterlab<5,>=4.0.2->notebook) (8.12.0)
Requirement already satisfied: matplotlib-inline>=0.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.1.6)
Requirement already satisfied: psutil in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipykernel->jupyterlab<5,>=4.0.2->notebook) (5.9.0)
Requirement already satisfied: six in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from websocket-client->jupyter-server<3,>=2.4.0->notebook) (1.16.0)
Requirement already satisfied: webencodings in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from bleach!=5.0.0->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (0.5.1)
Requirement already satisfied: backcall in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.2.0)
Requirement already satisfied: decorator in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (5.1.1)
Requirement already satisfied: jedi>=0.16 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.18.1)
Requirement already satisfied: pickleshare in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.7.5)
Requirement already satisfied: prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (3.0.36)
Requirement already satisfied: stack-data in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.2.0)
Requirement already satisfied: pexpect>4.3 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (4.8.0)
Requirement already satisfied: fqdn in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (1.5.1)
Requirement already satisfied: isoduration in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (20.11.0)
Requirement already satisfied: jsonpointer>1.13 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (2.1)
Requirement already satisfied: uri-template in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (1.3.0)
Requirement already satisfied: webcolors>=1.11 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (1.13)
Requirement already satisfied: cffi>=1.0.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from argon2-cffi-bindings->argon2-cffi->jupyter-server<3,>=2.4.0->notebook) (1.15.1)
Requirement already satisfied: soupsieve>1.2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from beautifulsoup4->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (2.4)
Requirement already satisfied: pycparser in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->jupyter-server<3,>=2.4.0->notebook) (2.21)
Requirement already satisfied: parso<0.9.0,>=0.8.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jedi>=0.16->ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.8.3)
Requirement already satisfied: wcwidth in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.2.5)
Requirement already satisfied: arrow>=0.15.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from isoduration->jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (1.2.3)
Requirement already satisfied: executing in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from stack-data->ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.8.3)
Requirement already satisfied: asttokens in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from stack-data->ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (2.0.5)
Requirement already satisfied: pure-eval in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from stack-data->ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.2.2)
Note: you may need to restart the kernel to use updated packages.
Requirement already satisfied: cffi>=1.0.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from argon2-cffi-bindings->argon2-cffi->jupyter-server<3,>=2.4.0->notebook) (1.15.1)
Requirement already satisfied: soupsieve>1.2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from beautifulsoup4->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook) (2.4)
Requirement already satisfied: pycparser in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->jupyter-server<3,>=2.4.0->notebook) (2.21)
Requirement already satisfied: parso<0.9.0,>=0.8.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jedi>=0.16->ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.8.3)
Requirement already satisfied: wcwidth in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from prompt-toolkit!=3.0.37,<3.1.0,>=3.0.30->ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.2.5)
Requirement already satisfied: arrow>=0.15.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from isoduration->jsonschema>=4.18.0->jupyterlab-server<3,>=2.22.1->notebook) (1.2.3)
Requirement already satisfied: executing in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from stack-data->ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.8.3)
Requirement already satisfied: asttokens in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from stack-data->ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (2.0.5)
Requirement already satisfied: pure-eval in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from stack-data->ipython>=7.23.1->ipykernel->jupyterlab<5,>=4.0.2->notebook) (0.2.2)
Downloading notebook-7.0.7-py3-none-any.whl (4.0 MB)
�[2K �[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━�[0m �[32m4.0/4.0 MB�[0m �[31m40.5 MB/s�[0m eta �[36m0:00:00�[0ma �[36m0:00:01�[0m
�[?25hDownloading jupyter_server-2.12.5-py3-none-any.whl (380 kB)
�[2K �[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━�[0m �[32m380.3/380.3 kB�[0m �[31m44.2 MB/s�[0m eta �[36m0:00:00�[0m
�[?25hDownloading jupyterlab-4.0.12-py3-none-any.whl (9.2 MB)
�[2K �[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━�[0m �[32m9.2/9.2 MB�[0m �[31m38.1 MB/s�[0m eta �[36m0:00:00�[0m00:01�[0m00:01�[0m
�[?25hDownloading jupyterlab_server-2.25.2-py3-none-any.whl (58 kB)
�[2K �[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━�[0m �[32m58.9/58.9 kB�[0m �[31m8.5 MB/s�[0m eta �[36m0:00:00�[0m
�[?25hDownloading async_lru-2.0.4-py3-none-any.whl (6.1 kB)
Downloading jsonschema-4.21.1-py3-none-any.whl (85 kB)
�[2K �[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━�[0m �[32m85.5/85.5 kB�[0m �[31m14.0 MB/s�[0m eta �[36m0:00:00�[0m
�[?25hDownloading jupyter_events-0.9.0-py3-none-any.whl (18 kB)
Downloading jupyter_lsp-2.2.2-py3-none-any.whl (68 kB)
�[2K �[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━�[0m �[32m68.8/68.8 kB�[0m �[31m10.2 MB/s�[0m eta �[36m0:00:00�[0m
�[?25hUsing cached pyzmq-25.1.2-cp311-cp311-macosx_10_15_universal2.whl (1.9 MB)
Downloading jupyter_server_terminals-0.5.2-py3-none-any.whl (13 kB)
Downloading overrides-7.7.0-py3-none-any.whl (17 kB)
Downloading attrs-23.2.0-py3-none-any.whl (60 kB)
�[2K �[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━�[0m �[32m60.8/60.8 kB�[0m �[31m9.1 MB/s�[0m eta �[36m0:00:00�[0m
�[?25hDownloading jsonschema_specifications-2023.12.1-py3-none-any.whl (18 kB)
Downloading referencing-0.33.0-py3-none-any.whl (26 kB)
Downloading rpds_py-0.17.1-cp311-cp311-macosx_11_0_arm64.whl (352 kB)
�[2K �[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━�[0m �[32m352.9/352.9 kB�[0m �[31m47.0 MB/s�[0m eta �[36m0:00:00�[0m
�[?25hInstalling collected packages: send2trash, rpds-py, pyzmq, overrides, attrs, async-lru, referencing, jupyter-server-terminals, jsonschema-specifications, jsonschema, jupyter-events, jupyter-server, jupyterlab-server, jupyter-lsp, jupyterlab, notebook
Attempting uninstall: send2trash
Found existing installation: Send2Trash 1.8.0
Uninstalling Send2Trash-1.8.0:
Successfully uninstalled Send2Trash-1.8.0
Attempting uninstall: pyzmq
Found existing installation: pyzmq 23.2.0
Uninstalling pyzmq-23.2.0:
Successfully uninstalled pyzmq-23.2.0
Attempting uninstall: attrs
Found existing installation: attrs 22.1.0
Uninstalling attrs-22.1.0:
Successfully uninstalled attrs-22.1.0
Attempting uninstall: jsonschema
Found existing installation: jsonschema 4.17.3
Uninstalling jsonschema-4.17.3:
Successfully uninstalled jsonschema-4.17.3
Attempting uninstall: jupyter-events
Found existing installation: jupyter-events 0.6.3
Uninstalling jupyter-events-0.6.3:
Successfully uninstalled jupyter-events-0.6.3
Attempting uninstall: jupyter-server
Found existing installation: jupyter-server 1.23.4
Uninstalling jupyter-server-1.23.4:
Successfully uninstalled jupyter-server-1.23.4
Attempting uninstall: jupyterlab-server
Found existing installation: jupyterlab_server 2.22.0
Uninstalling jupyterlab_server-2.22.0:
Successfully uninstalled jupyterlab_server-2.22.0
Attempting uninstall: jupyterlab
Found existing installation: jupyterlab 3.6.3
Uninstalling jupyterlab-3.6.3:
Successfully uninstalled jupyterlab-3.6.3
Attempting uninstall: notebook
Found existing installation: notebook 6.5.4
Uninstalling notebook-6.5.4:
Successfully uninstalled notebook-6.5.4
�[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
conda-repo-cli 1.0.41 requires requests_mock, which is not installed.
spyder 5.4.3 requires pyqt5<5.16, which is not installed.
spyder 5.4.3 requires pyqtwebengine<5.16, which is not installed.
conda-repo-cli 1.0.41 requires clyent==1.2.1, but you have clyent 1.2.2 which is incompatible.
conda-repo-cli 1.0.41 requires nbformat==5.4.0, but you have nbformat 5.7.0 which is incompatible.
conda-repo-cli 1.0.41 requires requests==2.28.1, but you have requests 2.31.0 which is incompatible.�[0m�[31m
�[0mSuccessfully installed async-lru-2.0.4 attrs-23.2.0 jsonschema-4.21.1 jsonschema-specifications-2023.12.1 jupyter-events-0.9.0 jupyter-lsp-2.2.2 jupyter-server-2.12.5 jupyter-server-terminals-0.5.2 jupyterlab-4.0.12 jupyterlab-server-2.25.2 notebook-7.0.7 overrides-7.7.0 pyzmq-25.1.2 referencing-0.33.0 rpds-py-0.17.1 send2trash-1.8.2
Note: you may need to restart the kernel to use updated packages.
pip install nbconvert
Requirement already satisfied: nbconvert in /Users/brashonford/.local/lib/python3.11/site-packages (7.14.2)
Requirement already satisfied: beautifulsoup4 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (4.12.2)
Requirement already satisfied: bleach!=5.0.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (4.1.0)
Requirement already satisfied: defusedxml in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (0.7.1)
Requirement already satisfied: jinja2>=3.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (3.1.2)
Requirement already satisfied: jupyter-core>=4.7 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (5.3.0)
Requirement already satisfied: jupyterlab-pygments in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (0.1.2)
Requirement already satisfied: markupsafe>=2.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (2.1.1)
Requirement already satisfied: mistune<4,>=2.0.3 in /Users/brashonford/.local/lib/python3.11/site-packages (from nbconvert) (3.0.2)
Requirement already satisfied: nbclient>=0.5.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (0.5.13)
Requirement already satisfied: nbformat>=5.7 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (5.7.0)
Requirement already satisfied: packaging in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (23.0)
Requirement already satisfied: pandocfilters>=1.4.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (1.5.0)
Requirement already satisfied: pygments>=2.4.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (2.15.1)
Requirement already satisfied: tinycss2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (1.2.1)
Requirement already satisfied: traitlets>=5.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbconvert) (5.7.1)
Requirement already satisfied: six>=1.9.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from bleach!=5.0.0->nbconvert) (1.16.0)
Requirement already satisfied: webencodings in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from bleach!=5.0.0->nbconvert) (0.5.1)
Requirement already satisfied: platformdirs>=2.5 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-core>=4.7->nbconvert) (2.5.2)
Requirement already satisfied: jupyter-client>=6.1.5 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbclient>=0.5.0->nbconvert) (7.4.9)
Requirement already satisfied: nest-asyncio in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbclient>=0.5.0->nbconvert) (1.5.6)
Requirement already satisfied: fastjsonschema in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbformat>=5.7->nbconvert) (2.16.2)
Requirement already satisfied: jsonschema>=2.6 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from nbformat>=5.7->nbconvert) (4.21.1)
Requirement already satisfied: soupsieve>1.2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from beautifulsoup4->nbconvert) (2.4)
Requirement already satisfied: attrs>=22.2.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert) (23.2.0)
Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert) (2023.12.1)
Requirement already satisfied: referencing>=0.28.4 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert) (0.33.0)
Requirement already satisfied: rpds-py>=0.7.1 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jsonschema>=2.6->nbformat>=5.7->nbconvert) (0.17.1)
Requirement already satisfied: entrypoints in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-client>=6.1.5->nbclient>=0.5.0->nbconvert) (0.4)
Requirement already satisfied: python-dateutil>=2.8.2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-client>=6.1.5->nbclient>=0.5.0->nbconvert) (2.8.2)
Requirement already satisfied: pyzmq>=23.0 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-client>=6.1.5->nbclient>=0.5.0->nbconvert) (25.1.2)
Requirement already satisfied: tornado>=6.2 in /Users/brashonford/anaconda3/lib/python3.11/site-packages (from jupyter-client>=6.1.5->nbclient>=0.5.0->nbconvert) (6.3.2)
Note: you may need to restart the kernel to use updated packages.
python jupyter={"outputs_hidden": true} pip install -U notebook-as-pdf
!sudo apt-get install texlive texlive-xetex texlive-fonts-recommended texlive-generic-extra texlive-generic-recommended
Password:
python jupyter={"outputs_hidden": true} !pyppeteer-install
python jupyter={"outputs_hidden": true} !jupyter-nbconvert --to PDFviaHTML ProjectAIDS.ipynb
!sudo apt-get install texlive texlive-latex-extra pandoc
Password:
sudo: a password is required
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.pipeline import make_pipeline
from scipy.spatial import distance_matrix
from sklearn.cluster import KMeans
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import statsmodels.api as sm
import numpy as np
pip install ucimlrepo
Requirement already satisfied: ucimlrepo in /Users/brashonford/anaconda3/lib/python3.11/site-packages (0.0.3)
Note: you may need to restart the kernel to use updated packages.
from ucimlrepo import fetch_ucirepo
# fetch dataset
aids_clinical_trials_group_study_175 = fetch_ucirepo(id=890)
# data (as pandas dataframes)
X = pd.DataFrame(aids_clinical_trials_group_study_175.data.features)
y = pd.DataFrame(aids_clinical_trials_group_study_175.data.targets)
# metadata
print(aids_clinical_trials_group_study_175.metadata)
# variable information
print(aids_clinical_trials_group_study_175.variables)
{'uci_id': 890, 'name': 'AIDS Clinical Trials Group Study 175', 'repository_url': 'https://archive.ics.uci.edu/dataset/890/aids+clinical+trials+group+study+175', 'data_url': 'https://archive.ics.uci.edu/static/public/890/data.csv', 'abstract': 'The AIDS Clinical Trials Group Study 175 Dataset contains healthcare statistics and categorical information about patients who have been diagnosed with AIDS. This dataset was initially published in 1996. The prediction task is to predict whether or not each patient died within a certain window of time or not. ', 'area': 'Health and Medicine', 'tasks': ['Classification', 'Regression'], 'characteristics': ['Tabular', 'Multivariate'], 'num_instances': 2139, 'num_features': 23, 'feature_types': ['Categorical', 'Integer'], 'demographics': ['Age', 'Sexual Orientation', 'Race', 'Gender'], 'target_col': ['cid'], 'index_col': ['pidnum'], 'has_missing_values': 'no', 'missing_values_symbol': None, 'year_of_dataset_creation': 1996, 'last_updated': 'Fri Nov 03 2023', 'dataset_doi': '10.24432/C5ZG8F', 'creators': ['S. Hammer', 'D. Katzenstein', 'M. Hughes', 'H. Gundacker', 'R. Schooley', 'R. Haubrich', 'W. K.', 'M. Lederman', 'J. Phair', 'M. Niu', 'M. Hirsch', 'T. Merigan'], 'intro_paper': {'title': 'A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. AIDS Clinical Trials Group Study 175 Study Team.', 'authors': 'S. Hammer, D. Katzenstein, M. Hughes, H. Gundacker, R. Schooley, R. Haubrich, W. K. Henry, M. Lederman, J. Phair, M. Niu, M. Hirsch, T. Merigan', 'published_in': 'New England Journal of Medicine', 'year': 1996, 'url': 'https://www.semanticscholar.org/paper/c7c401dd7d49ead07e70b299e422b27314589d2f', 'doi': None}, 'additional_info': {'summary': None, 'purpose': 'To examine the performance of two different types of AIDS treatments', 'funded_by': '- AIDS Clinical Trials Group of the National Institute of Allergy and Infectious Diseases\n- General Research Center units funded by the National Center for Research Resources', 'instances_represent': '- Health records\n- AIDS patients\n- US only', 'recommended_data_splits': 'Cross validation or a single train-test split could be used.', 'sensitive_data': '- Ethnicity (race)\n- Gender', 'preprocessing_description': 'No', 'variable_info': '- Personal information (age, weight, race, gender, sexual activity)\n- Medical history (hemophilia, history of IV drugs)\n- Treatment history (ZDV/non-ZDV treatment history)\n- Lab results (CD4/CD8 counts)', 'citation': None}, 'external_url': 'https://classic.clinicaltrials.gov/ct2/show/NCT00000625'}
name role type demographic \
0 pidnum ID Integer None
1 cid Target Binary None
2 time Feature Integer None
3 trt Feature Integer None
4 age Feature Integer Age
5 wtkg Feature Continuous None
6 hemo Feature Binary None
7 homo Feature Binary Sexual Orientation
8 drugs Feature Binary None
9 karnof Feature Integer None
10 oprior Feature Binary None
11 z30 Feature Binary None
12 zprior Feature Binary None
13 preanti Feature Integer None
14 race Feature Integer Race
15 gender Feature Binary Gender
16 str2 Feature Binary None
17 strat Feature Integer None
18 symptom Feature Binary None
19 treat Feature Binary None
20 offtrt Feature Binary None
21 cd40 Feature Integer None
22 cd420 Feature Integer None
23 cd80 Feature Integer None
24 cd820 Feature Integer None
description units missing_values
0 Patient ID None no
1 censoring indicator (1 = failure, 0 = censoring) None no
2 time to failure or censoring None no
3 treatment indicator (0 = ZDV only; 1 = ZDV + d... None no
4 age (yrs) at baseline None no
5 weight (kg) at baseline None no
6 hemophilia (0=no, 1=yes) None no
7 homosexual activity (0=no, 1=yes) None no
8 history of IV drug use (0=no, 1=yes) None no
9 Karnofsky score (on a scale of 0-100) None no
10 Non-ZDV antiretroviral therapy pre-175 (0=no, ... None no
11 ZDV in the 30 days prior to 175 (0=no, 1=yes) None no
12 ZDV prior to 175 (0=no, 1=yes) None no
13 # days pre-175 anti-retroviral therapy None no
14 race (0=White, 1=non-white) None no
15 gender (0=F, 1=M) None no
16 antiretroviral history (0=naive, 1=experienced) None no
17 antiretroviral history stratification (1='Anti... None no
18 symptomatic indicator (0=asymp, 1=symp) None no
19 treatment indicator (0=ZDV only, 1=others) None no
20 indicator of off-trt before 96+/-5 weeks (0=no... None no
21 CD4 at baseline None no
22 CD4 at 20+/-5 weeks None no
23 CD8 at baseline None no
24 CD8 at 20+/-5 weeks None no
X.columns
Index(['time', 'trt', 'age', 'wtkg', 'hemo', 'homo', 'drugs', 'karnof',
'oprior', 'z30', 'zprior', 'preanti', 'race', 'gender', 'str2', 'strat',
'symptom', 'treat', 'offtrt', 'cd40', 'cd420', 'cd80', 'cd820'],
dtype='object')
y
0 0
1 1
2 0
3 0
4 0
..
2134 0
2135 0
2136 0
2137 1
2138 0
Name: cid, Length: 2139, dtype: int64
import statsmodels.api as sm
y = combined_data['cid']
X_with_intercept = sm.add_constant(X)
model = sm.OLS(y, X_with_intercept, missing='drop')
# Fit the model to the data
results = model.fit()
# Print the results summary
results.summary()
Dep. Variable: | cid | R-squared: | 0.432 |
---|---|---|---|
Model: | OLS | Adj. R-squared: | 0.426 |
Method: | Least Squares | F-statistic: | 73.05 |
Date: | Sun, 04 Feb 2024 | Prob (F-statistic): | 2.85e-240 |
Time: | 09:47:11 | Log-Likelihood: | -621.79 |
No. Observations: | 2139 | AIC: | 1290. |
Df Residuals: | 2116 | BIC: | 1420. |
Df Model: | 22 | ||
Covariance Type: | nonrobust |
coef | std err | t | P>|t| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
time | -0.0009 | 2.91e-05 | -31.723 | 0.000 | -0.001 | -0.001 |
trt | -0.0012 | 0.010 | -0.125 | 0.901 | -0.021 | 0.018 |
age | 0.0017 | 0.001 | 2.015 | 0.044 | 4.63e-05 | 0.003 |
wtkg | 0.0004 | 0.001 | 0.650 | 0.516 | -0.001 | 0.001 |
hemo | -0.0445 | 0.034 | -1.316 | 0.188 | -0.111 | 0.022 |
homo | 0.0124 | 0.025 | 0.503 | 0.615 | -0.036 | 0.061 |
drugs | -0.0497 | 0.022 | -2.251 | 0.025 | -0.093 | -0.006 |
karnof | -0.0028 | 0.001 | -2.253 | 0.024 | -0.005 | -0.000 |
oprior | 0.0501 | 0.053 | 0.954 | 0.340 | -0.053 | 0.153 |
z30 | 0.0730 | 0.036 | 2.035 | 0.042 | 0.003 | 0.143 |
zprior | 1.3891 | 0.136 | 10.231 | 0.000 | 1.123 | 1.655 |
preanti | 4.741e-05 | 2.98e-05 | 1.593 | 0.111 | -1.1e-05 | 0.000 |
race | -0.0633 | 0.017 | -3.718 | 0.000 | -0.097 | -0.030 |
gender | 0.0081 | 0.028 | 0.293 | 0.770 | -0.046 | 0.063 |
str2 | -0.0412 | 0.049 | -0.844 | 0.399 | -0.137 | 0.055 |
strat | 0.0079 | 0.029 | 0.278 | 0.781 | -0.048 | 0.064 |
symptom | 0.0483 | 0.019 | 2.513 | 0.012 | 0.011 | 0.086 |
treat | -0.0192 | 0.027 | -0.726 | 0.468 | -0.071 | 0.033 |
offtrt | -0.2077 | 0.017 | -12.286 | 0.000 | -0.241 | -0.175 |
cd40 | 5.066e-05 | 8.25e-05 | 0.614 | 0.539 | -0.000 | 0.000 |
cd420 | -0.0005 | 7.32e-05 | -6.703 | 0.000 | -0.001 | -0.000 |
cd80 | -8.767e-06 | 2.55e-05 | -0.344 | 0.731 | -5.87e-05 | 4.12e-05 |
cd820 | 6.601e-05 | 2.75e-05 | 2.401 | 0.016 | 1.21e-05 | 0.000 |
Omnibus: | 168.735 | Durbin-Watson: | 1.969 |
---|---|---|---|
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 237.811 |
Skew: | 0.643 | Prob(JB): | 2.29e-52 |
Kurtosis: | 4.007 | Cond. No. | 3.53e+04 |
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 3.53e+04. This might indicate that there are
strong multicollinearity or other numerical problems.
combined_data.head()
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
time | trt | age | wtkg | hemo | homo | drugs | karnof | oprior | z30 | ... | str2 | strat | symptom | treat | offtrt | cd40 | cd420 | cd80 | cd820 | cid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 948 | 2 | 48 | 89.8128 | 0 | 0 | 0 | 100 | 0 | 0 | ... | 0 | 1 | 0 | 1 | 0 | 422 | 477 | 566 | 324 | 0 |
1 | 1002 | 3 | 61 | 49.4424 | 0 | 0 | 0 | 90 | 0 | 1 | ... | 1 | 3 | 0 | 1 | 0 | 162 | 218 | 392 | 564 | 1 |
2 | 961 | 3 | 45 | 88.4520 | 0 | 1 | 1 | 90 | 0 | 1 | ... | 1 | 3 | 0 | 1 | 1 | 326 | 274 | 2063 | 1893 | 0 |
3 | 1166 | 3 | 47 | 85.2768 | 0 | 1 | 0 | 100 | 0 | 1 | ... | 1 | 3 | 0 | 1 | 0 | 287 | 394 | 1590 | 966 | 0 |
4 | 1090 | 0 | 43 | 66.6792 | 0 | 1 | 0 | 100 | 0 | 1 | ... | 1 | 3 | 0 | 0 | 0 | 504 | 353 | 870 | 782 | 0 |
5 rows × 24 columns
X_train, X_test, y_train, y_test = train_test_split(combined_data.drop('cid', axis=1), combined_data['cid'], test_size=0.2, random_state=42)
model = LinearRegression()
# Fit the model to the training data
model.fit(X_train, y_train)
# Predict the target variable on the test set
y_pred = model.predict(X_test)
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
Mean Squared Error: 0.10882556678401331
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
Mean Squared Error: 0.10882556678401331
model = sm.OLS(combined_data['cid'], sm.add_constant(combined_data['cd420'])).fit()
model.summary()
Dep. Variable: | cid | R-squared: | 0.120 |
---|---|---|---|
Model: | OLS | Adj. R-squared: | 0.119 |
Method: | Least Squares | F-statistic: | 290.4 |
Date: | Sun, 04 Feb 2024 | Prob (F-statistic): | 3.63e-61 |
Time: | 09:56:11 | Log-Likelihood: | -1089.8 |
No. Observations: | 2139 | AIC: | 2184. |
Df Residuals: | 2137 | BIC: | 2195. |
Df Model: | 1 | ||
Covariance Type: | nonrobust |
coef | std err | t | P>|t| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
const | 0.6248 | 0.024 | 26.026 | 0.000 | 0.578 | 0.672 |
cd420 | -0.0010 | 6.02e-05 | -17.043 | 0.000 | -0.001 | -0.001 |
Omnibus: | 295.800 | Durbin-Watson: | 2.033 |
---|---|---|---|
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 369.141 |
Skew: | 0.983 | Prob(JB): | 6.95e-81 |
Kurtosis: | 2.470 | Cond. No. | 1.10e+03 |
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.1e+03. This might indicate that there are
strong multicollinearity or other numerical problems.
import statsmodels.api as sm
# Assuming 'cid' is the dependent variable
y = combined_data['cid']
independent_vars = ['age','hemo', 'homo', 'drugs', 'karnof', 'cd40', 'cd420']
# Using all specified columns from X as independent variables
X_with_intercept = sm.add_constant(X[independent_vars])
# Create the OLS model object
model = sm.OLS(y, X_with_intercept, missing='drop')
# Fit the model to the data
results = model.fit()
# Print the results summary
results.summary()
Dep. Variable: | cid | R-squared: | 0.132 |
---|---|---|---|
Model: | OLS | Adj. R-squared: | 0.129 |
Method: | Least Squares | F-statistic: | 46.29 |
Date: | Sun, 04 Feb 2024 | Prob (F-statistic): | 2.31e-61 |
Time: | 10:06:44 | Log-Likelihood: | -1074.7 |
No. Observations: | 2139 | AIC: | 2165. |
Df Residuals: | 2131 | BIC: | 2211. |
Df Model: | 7 | ||
Covariance Type: | nonrobust |
coef | std err | t | P>|t| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
const | 0.9761 | 0.151 | 6.453 | 0.000 | 0.679 | 1.273 |
age | 0.0022 | 0.001 | 2.131 | 0.033 | 0.000 | 0.004 |
hemo | -0.0127 | 0.035 | -0.362 | 0.718 | -0.082 | 0.056 |
homo | 0.0348 | 0.021 | 1.680 | 0.093 | -0.006 | 0.075 |
drugs | -0.0598 | 0.027 | -2.223 | 0.026 | -0.113 | -0.007 |
karnof | -0.0049 | 0.001 | -3.299 | 0.001 | -0.008 | -0.002 |
cd40 | 0.0001 | 9e-05 | 1.114 | 0.265 | -7.63e-05 | 0.000 |
cd420 | -0.0011 | 7.42e-05 | -14.171 | 0.000 | -0.001 | -0.001 |
Omnibus: | 283.920 | Durbin-Watson: | 2.049 |
---|---|---|---|
Prob(Omnibus): | 0.000 | Jarque-Bera (JB): | 357.990 |
Skew: | 0.971 | Prob(JB): | 1.83e-78 |
Kurtosis: | 2.501 | Cond. No. | 9.53e+03 |
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 9.53e+03. This might indicate that there are
strong multicollinearity or other numerical problems.
python jupyter={"outputs_hidden": true} summary_statistics = X.describe() summary_statistics
python jupyter={"outputs_hidden": true} sns.regplot(x = 'age', y = 'cid', data = combined_data)
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
from scipy.spatial import distance_matrix
from sklearn.cluster import KMeans
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
# Extract numerical columns
numerical_columns = combined_data.select_dtypes(include='number').columns
# Separate numerical data
numerical_data = combined_data[numerical_columns]
# Initialize the scaler
scaler = StandardScaler()
# Fit and transform the numerical data
scaled_numerical_data = scaler.fit_transform(numerical_data)
# Create a dataframe with scaled numerical data
X_scaled = pd.DataFrame(scaled_numerical_data, columns=numerical_columns)
# Display the first few rows of the scaled numerical dataframe
X_scaled
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
time | trt | age | wtkg | hemo | homo | drugs | karnof | oprior | z30 | ... | str2 | strat | symptom | treat | offtrt | cd40 | cd420 | cd80 | cd820 | cid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.235799 | 0.424960 | 1.464542 | 1.107649 | -0.303123 | -1.396547 | -0.388893 | 0.771836 | -0.149888 | -1.106116 | ... | -1.189210 | -1.090177 | -0.457338 | 0.575371 | -0.754541 | 0.603131 | 0.730927 | -0.876151 | -1.374260 | -0.567453 |
1 | 0.420600 | 1.311779 | 2.957595 | -1.936862 | -0.303123 | -1.396547 | -0.388893 | -0.923192 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | 0.575371 | -0.754541 | -1.590108 | -1.060207 | -1.238586 | -0.834779 | 1.762262 |
2 | 0.280288 | 1.311779 | 1.119991 | 1.005025 | -0.303123 | 0.716052 | 2.571400 | -0.923192 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | 0.575371 | 1.325309 | -0.206680 | -0.672935 | 2.242044 | 2.152597 | -0.567453 |
3 | 0.981848 | 1.311779 | 1.349692 | 0.765569 | -0.303123 | 0.716052 | -0.388893 | 0.771836 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | 0.575371 | -0.754541 | -0.535666 | 0.156934 | 1.256802 | 0.068852 | -0.567453 |
4 | 0.721757 | -1.348678 | 0.890291 | -0.636959 | -0.303123 | 0.716052 | -0.388893 | 0.771836 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | -1.738009 | -0.754541 | 1.294845 | -0.126605 | -0.242930 | -0.344750 | -0.567453 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2134 | 0.725180 | 1.311779 | -1.636415 | -1.646094 | 3.298990 | -1.396547 | -0.388893 | 0.771836 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | 0.575371 | 1.325309 | -1.674463 | -1.814005 | -0.886566 | -0.484116 | -0.567453 |
2135 | -1.656702 | -1.348678 | -2.095816 | 2.099680 | 3.298990 | -1.396547 | -0.388893 | 0.771836 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | -1.738009 | 1.325309 | 0.189790 | -1.060207 | 1.608823 | 0.212713 | -0.567453 |
2136 | 0.769669 | 0.424960 | 2.038793 | -0.397503 | 3.298990 | 0.716052 | -0.388893 | -0.923192 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | 0.575371 | -0.754541 | 0.577824 | -0.050533 | 0.842293 | 0.237440 | -0.567453 |
2137 | -1.417145 | -1.348678 | -2.440366 | -1.140667 | 3.298990 | -1.396547 | -0.388893 | 0.771836 | -0.149888 | -1.106116 | ... | -1.189210 | -1.090177 | -0.457338 | -1.738009 | -0.754541 | -1.556366 | -1.399071 | 0.025772 | 2.028966 | 1.762262 |
2138 | 0.567756 | 1.311779 | 1.119991 | 0.164003 | 3.298990 | -1.396547 | -0.388893 | 0.771836 | -0.149888 | -1.106116 | ... | -1.189210 | -1.090177 | -0.457338 | 0.575371 | -0.754541 | 4.728107 | 3.863683 | -0.211686 | -0.920197 | -0.567453 |
2139 rows × 24 columns
plt.figure(figsize=(12, 10))
sns.heatmap(X_scaled, annot=True, cmap='coolwarm', fmt=".2f", linewidths=.5)
plt.title('Heatmap of X_scaled and Target Variable')
plt.show()
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
logreg_model = LogisticRegression(max_iter=10000)
logreg_model.fit(X_train_scaled, y_train)
/Users/brashonford/anaconda3/lib/python3.11/site-packages/sklearn/utils/validation.py:1184: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
y = column_or_1d(y, warn=True)
LogisticRegression(max_iter=10000)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
LogisticRegression(max_iter=10000)
kcluster = KMeans(n_clusters=10, n_init=10, max_iter=100, random_state=6)
kcluster.fit(X_scaled)
kcluster = KMeans(n_clusters=10, n_init=10, max_iter=100, random_state=6)
kcluster.fit(X_scaled)
KMeans(max_iter=100, n_clusters=10, n_init=10, random_state=6)In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
KMeans(max_iter=100, n_clusters=10, n_init=10, random_state=6)
X_scaled
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
time | trt | age | wtkg | hemo | homo | drugs | karnof | oprior | z30 | ... | str2 | strat | symptom | treat | offtrt | cd40 | cd420 | cd80 | cd820 | cid | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.235799 | 0.424960 | 1.464542 | 1.107649 | -0.303123 | -1.396547 | -0.388893 | 0.771836 | -0.149888 | -1.106116 | ... | -1.189210 | -1.090177 | -0.457338 | 0.575371 | -0.754541 | 0.603131 | 0.730927 | -0.876151 | -1.374260 | -0.567453 |
1 | 0.420600 | 1.311779 | 2.957595 | -1.936862 | -0.303123 | -1.396547 | -0.388893 | -0.923192 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | 0.575371 | -0.754541 | -1.590108 | -1.060207 | -1.238586 | -0.834779 | 1.762262 |
2 | 0.280288 | 1.311779 | 1.119991 | 1.005025 | -0.303123 | 0.716052 | 2.571400 | -0.923192 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | 0.575371 | 1.325309 | -0.206680 | -0.672935 | 2.242044 | 2.152597 | -0.567453 |
3 | 0.981848 | 1.311779 | 1.349692 | 0.765569 | -0.303123 | 0.716052 | -0.388893 | 0.771836 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | 0.575371 | -0.754541 | -0.535666 | 0.156934 | 1.256802 | 0.068852 | -0.567453 |
4 | 0.721757 | -1.348678 | 0.890291 | -0.636959 | -0.303123 | 0.716052 | -0.388893 | 0.771836 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | -1.738009 | -0.754541 | 1.294845 | -0.126605 | -0.242930 | -0.344750 | -0.567453 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2134 | 0.725180 | 1.311779 | -1.636415 | -1.646094 | 3.298990 | -1.396547 | -0.388893 | 0.771836 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | 0.575371 | 1.325309 | -1.674463 | -1.814005 | -0.886566 | -0.484116 | -0.567453 |
2135 | -1.656702 | -1.348678 | -2.095816 | 2.099680 | 3.298990 | -1.396547 | -0.388893 | 0.771836 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | -1.738009 | 1.325309 | 0.189790 | -1.060207 | 1.608823 | 0.212713 | -0.567453 |
2136 | 0.769669 | 0.424960 | 2.038793 | -0.397503 | 3.298990 | 0.716052 | -0.388893 | -0.923192 | -0.149888 | 0.904064 | ... | 0.840894 | 1.134907 | -0.457338 | 0.575371 | -0.754541 | 0.577824 | -0.050533 | 0.842293 | 0.237440 | -0.567453 |
2137 | -1.417145 | -1.348678 | -2.440366 | -1.140667 | 3.298990 | -1.396547 | -0.388893 | 0.771836 | -0.149888 | -1.106116 | ... | -1.189210 | -1.090177 | -0.457338 | -1.738009 | -0.754541 | -1.556366 | -1.399071 | 0.025772 | 2.028966 | 1.762262 |
2138 | 0.567756 | 1.311779 | 1.119991 | 0.164003 | 3.298990 | -1.396547 | -0.388893 | 0.771836 | -0.149888 | -1.106116 | ... | -1.189210 | -1.090177 | -0.457338 | 0.575371 | -0.754541 | 4.728107 | 3.863683 | -0.211686 | -0.920197 | -0.567453 |
2139 rows × 24 columns
k = 10
kmeans = KMeans(n_clusters=k, n_init=n_init_value, random_state=42)
clusters = kmeans.fit_predict(X_scaled)
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)
X_pca
array([[-2.36230143, 0.31678765],
[ 2.85345536, -0.68877654],
[ 1.74057045, 1.33389314],
...,
[ 1.83036617, 1.88692201],
[-0.83757543, -2.92036584],
[-3.29896557, 3.58227713]])
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=clusters, cmap='viridis')
plt.title('Cluster Visualization')
plt.show()
kcluster.labels_
array([1, 6, 3, ..., 8, 8, 9], dtype=int32)
print(X_scaled_clustered.columns)
Index(['time', 'trt', 'age', 'wtkg', 'hemo', 'homo', 'drugs', 'karnof',
'oprior', 'z30', 'zprior', 'preanti', 'race', 'gender', 'str2', 'strat',
'symptom', 'treat', 'offtrt', 'cd40', 'cd420', 'cd80', 'cd820',
'klabel'],
dtype='object')
X_scaled_clustered = pd.DataFrame(X_scaled, columns=X.columns.copy())
X_scaled_clustered['klabel'] = kcluster.labels_
X_clustered = X.copy()
X_clustered['klabel'] = kcluster.labels_
X_scaled_clustered = X_scaled.copy()
print(X_clustered.head())
time trt age wtkg hemo homo drugs karnof oprior z30 ... str2 \
0 948 2 48 89.8128 0 0 0 100 0 0 ... 0
1 1002 3 61 49.4424 0 0 0 90 0 1 ... 1
2 961 3 45 88.4520 0 1 1 90 0 1 ... 1
3 1166 3 47 85.2768 0 1 0 100 0 1 ... 1
4 1090 0 43 66.6792 0 1 0 100 0 1 ... 1
strat symptom treat offtrt cd40 cd420 cd80 cd820 klabel
0 1 0 1 0 422 477 566 324 1
1 3 0 1 0 162 218 392 564 6
2 3 0 1 1 326 274 2063 1893 3
3 3 0 1 0 287 394 1590 966 7
4 3 0 0 0 504 353 870 782 2
[5 rows x 24 columns]
import matplotlib.pyplot as plt
for i in range(10):
plt.plot(kcluster.cluster_centers_[i], label=f'Cluster {i}')
plt.xticks(range(24), X_clustered, rotation=45)
plt.legend()
<matplotlib.legend.Legend at 0x2a7813190>
def plot_cluster_and_centroid(label):
cluster_data = X_clustered[X_clustered.klabel == label][X_clustered.columns].T
cluster_data.plot(legend=True)
plt.plot(kcluster.cluster_centers_[label], 'ko--')
plt.xticks(range(24), X_clustered.columns, rotation=45)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', borderaxespad=0)
plot_cluster_and_centroid(2)
grouped_df =X_clustered.groupby(['klabel' , 'cd420']).size().reset_index(name='count')
print(grouped_df.head())
klabel cd420 count
0 0 49 1
1 0 50 1
2 0 52 1
3 0 74 1
4 0 81 2
sns.clustermap(X_scaled, method = 'average', metric = 'euclidean', figsize = (15,40))
<seaborn.matrix.ClusterGrid at 0x17a23e610>
import numpy as np
import pandas as pd
from statsmodels.stats.anova import AnovaRM
import pandas as pd
from statsmodels.multivariate.manova import MANOVA
y_df = pd.DataFrame(y, columns=['cid'])
combined_data = pd.concat([X, y_df], axis=1)
print(combined_data.head())
time trt age wtkg hemo homo drugs karnof oprior z30 ... str2 \
0 948 2 48 89.8128 0 0 0 100 0 0 ... 0
1 1002 3 61 49.4424 0 0 0 90 0 1 ... 1
2 961 3 45 88.4520 0 1 1 90 0 1 ... 1
3 1166 3 47 85.2768 0 1 0 100 0 1 ... 1
4 1090 0 43 66.6792 0 1 0 100 0 1 ... 1
strat symptom treat offtrt cd40 cd420 cd80 cd820 cid
0 1 0 1 0 422 477 566 324 0
1 3 0 1 0 162 218 392 564 1
2 3 0 1 1 326 274 2063 1893 0
3 3 0 1 0 287 394 1590 966 0
4 3 0 0 0 504 353 870 782 0
[5 rows x 24 columns]
python jupyter={"outputs_hidden": true} X
python jupyter={"outputs_hidden": true} y
formula = 'trt + age + homo + gender ~ cid'
manova = MANOVA.from_formula(formula, data=combined_data)
result = manova.mv_test()
python jupyter={"outputs_hidden": true} print(result)
import statsmodels.api as sm
import statsmodels.formula.api as smf
model = smf.ols('cd40 ~ cid' , data= combined_data).fit()
aov_table = sm.stats.anova_lm(model)
aov_table
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
df | sum_sq | mean_sq | F | PR(>F) | |
---|---|---|---|---|---|
cid | 1.0 | 1.036000e+06 | 1.036000e+06 | 76.279993 | 4.870459e-18 |
Residual | 2137.0 | 2.902377e+07 | 1.358155e+04 | NaN | NaN |