-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmake_ner_tag.py
75 lines (57 loc) · 1.82 KB
/
make_ner_tag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import warnings
import argparse
import pandas as pd
from datasets import (
load_from_disk,
concatenate_datasets,
)
from pororo import Pororo
warnings.filterwarnings(action='ignore')
def main(args):
ner = Pororo(task="ner", lang="ko")
train_dataset = load_from_disk('../data/train_dataset/')
test_dataset = load_from_disk('../data/test_dataset/')
train_dataset_concat = concatenate_datasets(
[
train_dataset["train"].flatten_indices(),
train_dataset["validation"].flatten_indices(),
]
)
train_question = []
train_tagged = []
test_question = []
test_tagged = []
for train_data in train_dataset_concat:
train_question.append(train_data['question'])
train_tagged.append(train_data['question'].apply(ner))
train_dict = {
"question":train_question,
"pororo_ner":train_tagged
}
for test_data in test_dataset:
test_question.append(test_data['question'])
test_tagged.append(test_data['question'].apply(ner))
test_dict = {
"question":test_question,
"pororo_ner":test_tagged
}
train_df = pd.DataFrame(train_dict)
test_df = pd.DataFrame(test_dict)
train_df[['question','pororo_ner']].to_csv(args.train_output_dir+'/train_tagged.csv',index=False)
test_df[['question','pororo_ner']].to_csv(args.inference_output_dir+'/inference_tagged.csv',index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--train_output_dir",
type=str,
default=".",
help="decide train_output_dir",
)
parser.add_argument(
"--inference_output_dir",
type=str,
default=".",
help="decide inference_output_dir",
)
args = parser.parse_args()
main(args)