
Interpretation: The Final Frontier of
Compilers

Martin Krastev, Chaos Group

Just an extra level of abstraction at runtime?

Compiled code Interpreted code

 native code 
 processing uint (PU)

 foreign code 
 interpreter/VM 
 PU 

Interpretation is key to optimizing compilers!

Optimizing compilers ‒ machine-code generators that do (among other things) ahead-of-time
interpretation so that runtime “interpretation” ‒ a von-Neumann PU executing the machine version of the
code, has less to do.

‘The fastest code is code that is not executed (at runtime).’

Over the next fourtish minutes
Ahead-of-time interpretation manifests vividly in partial evaluation (PE) ‒ compile-time code evaluation
and specialization. So let’s do some PE from first principle! We will:

● Introduce a minimalistic ‘calculator’ language to quickly define ASTs we could tinker with
● Solve teething issues of inlining
● Devise a partial evaluator running on runtime properties of the code
● Write sample codes and run those through our tiny optimizer

For the sake of argument ‒ TINL

This is Not Lisp (TINL, proncounced tai-nul) is a minimalistic LISP-like language, using familiar
s-expressions with essential restrictions:

● no lists
● no array, vector, string or function types ‒ just scalars
● no defstruct structured types either
● no set/setq/setf forms ‒ variable initializations are effectively Single Static Assignments (SSA)
● no quoted expressions or macros
● no lambdas
● no NIL results ‒ all expressions must return a value
● no bignum numeric type ‒ only fixed-bitness integers
● no rational numeric type ‒ only floating-point fractions
● no binary or octal literals ‒ only decimal and hexidecimal (via 0x prefix)
● no T/NIL predicate forms ‒ ifzero/ifneg expr then-expr else-expr instead
● no dotimes et al loop forms ‒ loops only via recursion

S-expressions for the uninitiated

S-expressons in TINL obey these syntactic principles:

● single-term expressions:
x // evaluate var x (not function x)
42 // evaluate integral literal 42

● multi-term expressions ‒ a sequence of terms separated by blanks and delimited by parentheses,
where the ‘verb’ comes first ‒ Polish notation:

(foo x y z) // invoke function foo on three arguments ‒ vars x, y and z
(bar) // invoke function bar of no arguments

A multi-term s-expression of multi-term s-expressions:

(foo (+ x y) (- y z) (bar)) // invoke foo on three args: 1. the sum of x and y
// 2. the difference of y and z
// 3. the result from bar

S-expressions ‒ trees in disguise

(foo (+ x y) (- y z) (bar))

foo

+ - bar

x y y z

Input/output in TINL (similar to LISP)
Input:

● (readi32) ‒ read an i32 from standard input
● (readf32) ‒ read an f32 from standard input

Output:

● (print x) ‒ print value of x to stardard output, return x
● return value of the root expression

Control flow in TINL (like in LISP)
Control flow follows these basic rules:

● explicit ‒ function invocations ‒ (foo)
● function arguments are evaluated in order of passing ‒ (bar 1 2 3)
● ..unless invoking branching functions ifpred-then-else ‒ (ifzero x (foo) (bar)) ‒ either foo or bar
● let-expressions

Let-expressions in TINL (like in LISP)
Let-expressions ‒ nested scopes that introduce symbols for reuse by sequentially-executed
sub-expressions; last sub-expression is the result of the let-expression:

(let ((x 42) (y 43)) // initialize locally-scoped x and y to 42 and 43, respectively
 (print x) // print x
 (print y) // then print y
 (+ x y)) // return sum of x and y

Functions in TINL (like in LISP)
A defun statement defines a function ‒ a named form of let-expressions, executed only by invocation.

(let ((x 42) (y 43)) // initialize locally-scoped x and y to 42 and 43, respectively
 (print x) // print x
 (print y) // then print y
 (+ x y)) // return sum of x and y

(defun foo(x y) // define foo as function of x and y ‒ no initialization!
 (print x)
 (print y)
 (+ x y))
(foo 42 43) // invoke foo for x = 42, y = 43

Inlining is the opposite to turning a let-expression into a function:

(defun bar(x y)
 (print (* x y)))
(bar 7 8) // invoke bar for x = 7, y = 8

(let ((x 7) (y 8)) // inline bar for x = 7, y = 8
 (print (* x y)))

Function inlining in TINL

Return-type evaluation (like in LISP)
The problem of return-type evaluation:

(defun foo() 42) // foo -> i32, via literal 42
(defun bar(x) x) // bar -> typeof(x)
(defun bas(x) (ifzero x 42 43.0)) // could be i32 or f32, via branching function ifzero-then-else

Deciding the return type of bas requires evaluating bas for x, ergo the problem of return-type evaluation ==
problem of general evaluation. The quirks of dynamism!

Code analysis ‒ two sides to every story
Two distinct forms of code analysis. Expressed in loose human equivalents:

● Static analysis
○ A programmer staring at some code in the editor.

● Dynamic analysis
○ A programmer tracing that code in the debugger.

The realm of static analysis
Static analysis tries to tell things about a piece of code ‘at a glance’, without executing that piece of code.
The realm of static analysis is static properties of the code.

(defun foo() 42) // obviously foo -> i32 42

Once arguments are introduced:

(defun bar(x) x) // obviously bar -> typeof(x)

Full observability of callees at call sites allows specialization for the given arguments:

(defun bar(x) x)
(bar 42) // (bar 42) -> i32 42, by specializing bar for 42

The realm of dynamic analysis
Dynamic analysis tries to tell things about a piece of code at execution. The realm of dynamic analysis is
control flow and computation results.

(defun foo(x y z) (+ x y z))
(foo 1 2 3)

Specializing for the call site and executing the computation, we conclude that (foo 1 2 3) -> i32 6.

Our use of both types of analysis
Today we will employ:

● minimal static analysis ‒ limited type propagation at AST build time
● extensive dynamic analysis ‒ partial evaluation via ahead-of-time AST interpretation and subsequent

AST optimization

But first ‒ inlining
Dynamic analysis is agnostic of inlining, but we still need inlining for one mundane reason:

(defun foo(x) (ifzero x 42 43))
(foo 0) // arg x is zero, foo optimizes to literal 42
(foo 1) // arg x is non-zero, foo optimizes to literal 43

To optimize foo, we potentially need as many ‘copies’ of foo as the number of call sites ‒ code
de-deduplication.

For the sake of simplicity, we will always inline during optimisation, so we can freely apply transformations
on that function without worrying we’d break other call sites.

Inlining: a shadow of a problem

So, what is the answer?

● Not inlined ‒ 3.14159265
● Inlined ‒ 42

Original code

(let ((pi 3.14159265))
 (defun answer() pi)
 (let ((pi 42)) (answer)))

Inlined defun ‘answer’

(let ((pi 3.14159265))
 (defun answer() pi)
 (let ((pi 42)) (let () pi)))

Inlining: a shadow of a problem

So, what is the answer?

● Not inlined ‒ 3.14159265
● Inlined ‒ 42

A: We cannot rely on the given identifiers at inlining due to unintended variable shadowing (problem A)

Original code

(let ((pi 3.14159265))
 (defun answer() pi)
 (let ((pi 42)) (answer)))

Inlined defun ‘answer’

(let ((pi 3.14159265))
 (defun answer() pi)
 (let ((pi 42)) (let () pi)))

Inlining: a shadow of a problem, cont’d
Original code

(let ((pi 3.14159265))
 (defun answer() pi)
 (let ((pi 42)) (answer)))

Fabricating unique identifiers at declaration and copying those at inlining avoids unintended shadowing.

(let ((pi [id:n] 3.14159265))
 (defun answer() pi [id:n])
 (let ((pi [id:m] 42)) (let () pi [id:n])))

Inlined defun ‘answer’

(let ((pi 3.14159265))
 (defun answer() pi)
 (let ((pi 42)) (let () pi)))

Inlining: a shadow of a problem, cont’d
What about recursive code?

(defun foo(x [id:n] y [id:m])
 (foo y [id:m] (+ x [id:n] 1)))

Expanding one level of recursion via inlining

(defun foo(x [id:n] y [id:m])
 (let ((x [id:n] y [id:m]) (y [id:m] (+ x [id:n] 1)))
 (foo y [id:m] (+ x [id:n] 1))))

Inlining: a shadow of a problem, cont’d
What about recursive code?

(defun foo(x [id:n] y [id:m])
 (foo y [id:m] (+ x [id:n] 1)))

Expanding one level of recursion via inlining

(defun foo(x [id:n] y [id:m])
 (let ((x [id:n] y [id:m]) (y [id:m] (+ x [id:n] 1)))
 (foo y [id:m] (+ x [id:n] 1))))

Inlining: a shadow of a problem, cont’d
What about recursive code?

(defun foo(x [id:n] y [id:m])
 (foo y [id:m] (+ x [id:n] 1)))

Merely copying fabricated IDs brings to picking the wrong shadows in init expressions (problem B)

Expanding one level of recursion via inlining

(defun foo(x [id:n] y [id:m])
 (let ((x [id:n] y [id:m]) (y [id:m] (+ x [id:n] 1)))
 (foo y [id:m] (+ x [id:n] 1))))

Inlining: a shadow of a problem, cont’d
What about recursive code?

(defun foo(x [id:n] y [id:m])
 (foo y [id:m] (+ x [id:n] 1)))

Merely copying fabricated IDs brings to picking the wrong shadows in init expressions.

(defun foo(x [id:n] y [id:m])
 (let ((x [id:n] y [id:m]) (y [id:m] (+ x [id:n] 1)))
 (foo y [id:m] (+ x [id:n] 1))))

Expanding one level of recursion via inlining

(defun foo(x [id:n] y [id:m])
 (let ((x [id:n] y [id:m]) (y [id:m] (+ x [id:n] 1)))
 (foo y [id:m] (+ x [id:n] 1))))

Solution is simple ‒ make declarations invisible for
expressions in the same init section (blue rectangle on
the left).

Our dynamic analysis has access to the return value of an expression, and we will utilize that for all our
optimisations. A return value in TINL has the following natural attributes:

● Type (one of i32, f32)
● Value

We extend those with these additional attributes:

● flag literal ‒ only literals have participated in the computation of the value
● flag sidefx ‒ value has participated in a side effect
● flag incoherent ‒ value has undergone non-deterministic branching returning different types

Bits of unobtainium

Flag literal ‒ only literals have participated in the computation of the value.

Examples:

(+ 1 2 3) // arithmetics over literals

(ifneg -1 3.14 (readf32)) // branching with a literal predicate that choses a literal branch

(defun foo(x) x) // result from a pure function
(foo 42) // when passed a literal

Counterexamples:

(ifzero (readi32) -1 42) // branch with a non-literal predicate ‒ result not a literal

Bits of unobtainium: flag literal

Flag sidefx ‒ value has participated in a side effect.

As variables in TINL are immutable, side effects can come only via the built-in function print.
Examples:

(print 3.14) // print a literal, return same literal

(print (readi32)) // print an i32 value read from input, return same value

Bits of unobtainium: flag sidefx

Flag incoherent ‒ the value has undergone non-deterministic branching returning different types.

Examples:

(ifzero (readi32) 3.14 42) // expression returns either an f32 or an i32, based on input

Counterexamples:

(ifzero (readi32) 3.14 42.0) // expression returns f32, regardless of input ‒ not incoherent

Bits of unobtainium: flag incoherent

Bits of unobtainium: composition
If we present every value as a composite of some set of arguments A0 through An , specific to that value,
then:

● flag literal is an intersection of its compositing args ‒ A0literal ∩ A1literal ∩ … Anliteral
● flag sidefx is a union of its compositing args ‒ A0sidefx ∪ A1sidefx ∪ … Ansidefx
● flag incoherent is a union of its compositing args ‒ A0incoherent ∪ A1incoherent ∪ … Anincoherent

Bits of unobtainium: what are they worth?
Having those extra three attributes derived at every AST node along the path of PE allows us to specialize
the AST accordingly:

● For subtrees that produce a literal but don’t exert sidefx ‒ collapse the subtree to a literal node.
● For branching whose predicate is a literal

○ if the predicate has no sidefx ‒ shortcut the branching via an edge from the parent to the taken
branch.

○ if the predicate has sidefx ‒ turn the branching into a let-expression of two sub-expressions ‒
the predicate and the taken branch.

● For nodes whose value is not incoherent ‒ update the type of the node to the type of the value.

Please note, that by convention a value cannot be both literal and incoherent!

Our vehicle for today ‒ TINL AST
A TINL AST is a TINL-correct syntax tree comprising of these node semantics:

● ASTNODE_LET ‒ let-expression or defun-statement
● ASTNODE_INIT ‒ statement introduces a named variable in a let-expression or defun-statement
● ASTNODE_EVAL_VAR ‒ variable evaluation expression
● ASTNODE_EVAL_FUN ‒ function evaluation expression (i.e. an invocation)
● ASTNODE_LITERAL ‒ literal expression ‒ either integral (i32) or floating-point (f32)

DEFUN does not have a dedicted node type. Instead we re-purpose a LET node into a DEFUN statement
that is a nop for linear execution. We differentiate LET expressions from DEFUN statements by the fact the
latter are named while the former are not.

(+ 1 2 3)

ASTNODE_EVAL_FUN: i32 +
 ASTNODE_LITERAL: i32 1
 ASTNODE_LITERAL: i32 2
 ASTNODE_LITERAL: i32 3

(let ((x 42)) x)

ASTNODE_LET: i32
 ASTNODE_INIT: i32 x
  ASTNODE_LITERAL: i32 42
 ASTNODE_EVAL_VAR: i32 x

AST examples in TINL
(defun foo(x) x)
(foo 42)

ASTNODE_LET: unknown foo
 ASTNODE_INIT: unknown x
 ASTNODE_EVAL_VAR: unknown x
ASTNODE_EVAL_FUN: unknown foo
 ASTNODE_LITERAL: i32 42

node semantics
What does it do?

eval type
What type is the result?

identifier or literal
How is it known, or what does it refer to?

Example codes: non-recursive flow
(defun abs(x) // abs: |x|
 (ifneg x (- 0 x) x))
(defun pow3(x) // pow3: x3

 (* x x x))
(defun foo(x y) // foo: |x3| * y
 (* (abs (pow3 x)) y))
(foo -3 (readi32))

AST of invocation post-PE

ASTNODE_LET: i32
 ASTNODE_INIT: i32 x
 ASTNODE_LITERAL: i32 -3
 ASTNODE_INIT: i32 y
 ASTNODE_EVAL_FUN: i32 readi32
 ASTNODE_EVAL_FUN: i32 *
 ASTNODE_LITERAL: i32 27
 ASTNODE_EVAL_VAR: i32 y

Example codes: recursive flow
(defun fac(n) // fac: n!
 (ifzero n 1 (* n (fac (- n 1)))))
(fac 12)

AST of invocation post-PE

ASTNODE_LITERAL: i32 479001600

Example codes: recursive flow
(defun fib(x y n) // fib: the n-th fibonacci after x, y
 (ifzero n y (fib y (+ x y) (- n 1))))
(fib 1 1 44) // compute the 46th fibonacci

AST of invocation post-PE

ASTNODE_LITERAL: i32 1836311903

Example codes: recursive flow, sidefx
(defun fib(x y n) // fib: the n-th fibonacci after x, y w/ print
 (print x)
 (ifzero n (print y) (fib y (+ x y) (- n 1))))
(fib 1 1 3) // print the first 5 fibonaccis

ASTNODE_LET: i32
 ASTNODE_INIT: i32 x
 ASTNODE_LITERAL: i32 1
 ASTNODE_INIT: i32 y
 ASTNODE_LITERAL: i32 1
 ASTNODE_INIT: i32 n
 ASTNODE_LITERAL: i32 3
 ASTNODE_EVAL_FUN: i32 print
 ASTNODE_LITERAL: i32 1
 ASTNODE_LET: i32
 ASTNODE_INIT: i32 x
 ASTNODE_LITERAL: i32 1
 ASTNODE_INIT: i32 y
 ASTNODE_LITERAL: i32 2
 ASTNODE_INIT: i32 n
 ASTNODE_LITERAL: i32 2
 ASTNODE_EVAL_FUN: i32 print
 ASTNODE_LITERAL: i32 1

 ASTNODE_LET: i32
 ASTNODE_INIT: i32 x
 ASTNODE_LITERAL: i32 2
 ASTNODE_INIT: i32 y
 ASTNODE_LITERAL: i32 3
 ASTNODE_INIT: i32 n
 ASTNODE_LITERAL: i32 1
 ASTNODE_EVAL_FUN: i32 print
 ASTNODE_LITERAL: i32 2
 ASTNODE_LET: i32
 ASTNODE_INIT: i32 x
 ASTNODE_LITERAL: i32 3
 ASTNODE_INIT: i32 y
 ASTNODE_LITERAL: i32 5
 ASTNODE_INIT: i32 n
 ASTNODE_LITERAL: i32 0
 ASTNODE_EVAL_FUN: i32 print
 ASTNODE_LITERAL: i32 3
 ASTNODE_EVAL_FUN: i32 print
 ASTNODE_LITERAL: i32 5

AST of invocation post-PE

● Constant folding & constant propagation across calls
● Type propagation across calls
● Dead code elimination

All of the above are non-exhaustive ‒ only for evaluated paths!

Optimisations achieved

Purely dynamic analysis fails at some problems trivial for static analysis.

What is the return type of the ‘abs’ invocation?

(defun abs(x)
 (ifneg x (- 0 x) x))
(abs (readi32))

Both branches of the non-deterministic ifneg utilize the
‘unknown’ x, so whichever path the PE takes, one x will be
resolved to i32, while the other path will remain with an
unresolved x, thus the overall return type of the invocation
will be unresolved!

AST of defun ‘abs’

ASTNODE_LET: unknown abs
 ASTNODE_INIT: unknown x
 ASTNODE_EVAL_FUN: unknown ifneg
 ASTNODE_EVAL_VAR: unknown x
 ASTNODE_EVAL_FUN: unknown -
 ASTNODE_LITERAL: i32 0
 ASTNODE_EVAL_VAR: unknown x
 ASTNODE_EVAL_VAR: unknown x

Know thy limits

Notable encounters of PE
● Arithmetic/logical ops in #if (expression) ‒ out-of-band PE
● Meta programming ‒ e.g. C++ template specialization & subsequent optimisations
● Proper meta programming ‒ e.g. macros in LISP
● Explicit compile-time execution ‒ e.g. Zig ‘comptime’ decorator
● Deferred/just-in-time (JIT) compilation w/ specialization ‒ e.g. LLVM MCJIT
● User-directed PE ‒ e.g. AnyDSL compiler framework for computational kernels

Q & A

martin.krastev@chaosgroup.com

[1] Compile-time execution, Wikipedia
https://en.wikipedia.org/wiki/Compile_time_function_execution
[2] Fujita, Partial evaluation with LLVM
https://llvm.org/devmtg/2008-08-23/llvm_partial.pdf
[3] Jones, Gomard, Sestoft et al, Partial Evaluation and Automatic Program Generation
https://www.itu.dk/~sestoft/pebook/jonesgomardsestoft-a4.pdf
[4] AnyDSL - A Partial Evaluation Framework for Programming High-Performance Libraries
https://anydsl.github.io/
[5] Krastev, TINL
https://github.com/blu/tinl

https://en.wikipedia.org/wiki/Compile_time_function_execution
https://llvm.org/devmtg/2008-08-23/llvm_partial.pdf
https://www.itu.dk/~sestoft/pebook/jonesgomardsestoft-a4.pdf
https://anydsl.github.io/
https://github.com/blu/tinl

